
Refactoring with LLMs:
Lessons Learned
Danny Dig, Abhiram Bellur
University of Colorado, JetBrains Research

Assistant augments our capacity

285 Nm, 500 Wh

Next Generation Refactoring: LLM
Insights and IDE for ExtractMethod

3

Timofey
Bryksin

Danny
Dig

Dorin
Pomian

Abhiram
Bellur

Malinda
Dilhara

Zarina
Kurbatova

Egor
Bogomolov

Andrey
Sokolov

Long Methods In Codebases

4

Extract Method Refactoring

1. Original Method

2. Extracted Method

3. Call Site

5

Semi-automated process

No automatic recommendations

Current Extract Method Workflow in IntelliJ

JetBrains’ IntelliJ IDEA has extract
method capabilities

6

Extract Method Research

Many research tools for recommending fragments to extract
- JDeodorant
- JExtract
- LiveREF
- REMS
- GEMS
- SEMI

7

? Optimize software quality metrics

Generate refactorings that do not align with developers’ preferences

Large Language Models (LLMs) + Refactoring

Corpus of 2,849 real-life methods:

LLMs are creative and prolific: 12,387 Extract Method suggestions
(averaging 4 suggestions per method)

45.7% of the suggestions may be invalid, potentially resulting in non-
compiling code

16.6% of suggestions are not useful (e.g.
one liners, or entire method body)

8

Key Idea: LLMs for
recommendation
+ IDE for safe execution

Our solution: EM-Assist
IntelliJ IDEA plugin implementation

Leverage creative capabilities of LLMs

Use static analysis techniques to filter, further enhance, an rank LLM-provided
suggestions

Utilize the full power of a state-of-the-practice commercial IDE, IntelliJ IDEA, to
apply refactorings safely

9

10

Demo

11

LLM (GPT 3.5)

method to refactor

select

Prompt:
Extract Method
suggestions?

Extract method
suggestions

Valid, Useful and
Enhanced Extract
method suggestions

Is Useful?

 Enhancer

Rank suggestions

Is valid?

Select a
suggestion

apply

3

1

2

5

8

4

7
9

6

IntelliJ
IDEA

EM-Assist Workflow

EM-Assist Evaluation Results

Oracle of actual 1,752 extract method refactorings from OSS
● EM-Assist achieved 53% recall rate
● Compared to

○ 39% recall rate by JExtract (best in class using static analysis)
○ 5% recall rate by LiveREF

18 developers participated in usability survey, 94% gave a positive rating:

”Thank you for interesting suggestions! Hope to see this in production.”

”These suggestions made me look at this code with new eyes, and I will refactor it.”

12

LLM-Powered Move
Method Assistant

Move Method Refactoring

https://refactoring.guru/smells/feature-envy

Solution to feature envy!

Challenges for Move Method

Challenges:
• - determine which method is out of place
• - find a suitable Target class

• Global project understanding

LLM + Vector embeddings + IDE

Demo

Workflow

Results

Corpus of 208 refactorings performed by OSS
developers

• Recall 82%
• 4x better than previous best-in-class tools

Unprecedented Code Change Automation: The Fusion
of LLM and Transformation by Example

FSE’24 Research Track

Malinda Dilhara Abhiram Bellur Timofey Bryksin Danny Dig

Code change pattern (CPAT)

number = 0
for x in intArray:

number= number + x
number= numpy.sum(intArray)

20

Commit c8b28432 in GitHub project NifTK/NiftyNet

21

Transformation By Example

Learn coding best practices from open-source repos and transplant
these into other code
Cannot apply these to new sites unless the code is exactly the same

Use LLM to generate many code variants, we validate
automatically and apply suggestions to new locations

14x improvements over previous state of the art approach
We contributed to famous open-source projects, they accepted 83%
of our suggestions

Under the hood: PyCraft

21

.

.

.

CPATs

Version history of
software systems

R-CPATMiner

Prompt:
test-cases?

Prompt:
variations?

Test cases

CPAT
variations

3

4

2

1

Correct?
5

Useful?

6

Applicable?
7

Synthesiser

Transformation
rules

Target
project

Transformed
code

Code rewriter

LLM (T = 1.2, Ip= 5)

LLM (T = 0.5, 0.7, Ip= 3, If = 5)

LLMs are Prolific but with High rate of hallucinations:
- ExtractMethod: 73% rate of hallucinations

- MoveMethod 80% hallucinations

- PyCraft: 65% hallucinations

-Unit tests: 35% hallucinations

Do what LLM suggests, not what they do => need for powerful validators

○ remove hallucinations automatically reusing static analysis from the IDE (e.g., refactoring precondition)

Where else can we reuse the IDE as validator?

○ new static analysis

○ dynamic analysis: generated small unit tests in PyCraft, used original code variant as validator

Lessons Learned

22

Precise prompt for higher quality suggestions

○ append line numbers for the code input

○ ask LLM to give you precise response using line numbers

○ ask LLM to specify the output in structured format (JSON): useful if the output is consumed by other tools

Few-shot learning worked best for both EM-Assist and PyCraft

For MoveMethod-Assist: RAG needed to focus the LLM laser in large projects, along with Chain-of-Thought

Lessons Learned

23

To get consistent high-quality suggestions, you need to reprompt (in the background), accumulate

results shown to the user

Re-prompting not a waste

Newly-designed ranking to match LLM workflow (e.g., popularity of suggestions, heat map of the

code affected by suggestions)

Sweet spot: tuning LLM hyperparameters (e.g., temperatures and number of iterations) is essential
• Higher randomness in Large Language Models is preferred when a solid validation framework exists

Lessons Learned:
Taming LLM nondeterminism

24

Executive Summary

IDE LLM 26+

	Slide 1: Refactoring with LLMs: Lessons Learned
	Slide 2: Assistant augments our capacity
	Slide 3: Next Generation Refactoring: LLM Insights and IDE for ExtractMethod
	Slide 4: Long Methods In Codebases
	Slide 5: Extract Method Refactoring
	Slide 6: Current Extract Method Workflow in IntelliJ
	Slide 7: Extract Method Research
	Slide 8: Large Language Models (LLMs) + Refactoring
	Slide 9: Our solution: EM-Assist
	Slide 10
	Slide 11: EM-Assist Workflow
	Slide 12: EM-Assist Evaluation Results
	Slide 13: LLM-Powered Move Method Assistant
	Slide 14: Move Method Refactoring
	Slide 15: Challenges for Move Method
	Slide 16: Demo
	Slide 17: Workflow
	Slide 18: Results
	Slide 19: Unprecedented Code Change Automation: The Fusion of LLM and Transformation by Example
	Slide 20: Code change pattern (CPAT)
	Slide 21: Transformation By Example
	Slide 22: Under the hood: PyCraft
	Slide 23: Lessons Learned
	Slide 24: Lessons Learned
	Slide 25: Lessons Learned: Taming LLM nondeterminism
	Slide 26: Executive Summary
	Slide 27: Bonus Slides
	Slide 28: Lessons Learned
	Slide 29: Executive Summary
	Slide 30: Filtering Hallucinations
	Slide 31: Ranking the Suggestions

