Development Platforms
for Agentic Software

Gustavo Oliva
www.gaoliva.com



How to cite this session?

@misc{0Oliva2024AIwareTutorial,

author = {Gustavo Oliva},

title = {Development Platforms for Agentic Software},

howpublished = {Tutorial presented at the AIware Leadership Bootcamp 2024},
month = {November},

year = {2024},

address = {Toronto, Canada}l,
note = {Part of the AIware Leadership Bootcamp series.},
url = {https://aiwarebootcamp.io/slides/2024 aiwarebootcamp oliva development platforms for agentic software.pdf}}




Overview of the session

 Introduction (smin)
] Deep dive into Microsoft AutoGen with examples (somin)

] Creating an AutoGen playground for experimentation (1omin)

1 Other agentic development platforms (s min)
] Standardization efforts for FM-powered Agents (s min)

1 Beyond this presentation (1 min)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &@ASE



Overview of the session

[ Introduction

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &%



Introduction

* The idea of multi-agent systems have been around for a
while (e.g., agents in Reinforcement Learning)

* Multi-agent systems are typically designed around
autonomous agents that interact with each other to
achieve a broader goal (e.g., fix a software bug)

e Suitable architecture for complex problems that require
decomposition (each agent focuses on solving one part

of the prObIem) [...] AGI will take the form
. ) i factor of some kind of an Al
* With the advent of foundation models (particularly smarter agent. And it's not just going
LLMs), the community quickly saw the potential of creating to be a single agent. [1]

FM-powered agents and FM-powered multi-agent systems.

Andrej Karpathy (former director of Al and
Autopilot Vision at Tesla. Now with OpenAl)

e Shortly after, the need for flexible multi-agent frameworks
and platforms emerged...

[1] https://www.youtube.com/watch?v=aGV3aycnwhA Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &



https://www.youtube.com/watch?v=aGV3aycnwhA

The need for multi-agent frameworks

 AutoGen [1] from Microsoft became one of

the most popular multi-agent frameworks in
late 2023

AutoGen: Enabling Next-Gen LLM
Applications via Multi-Agent Conversation

* Multi-agent systems from that time (e.g., EQ:ngy":hwuiTgm Bj:sw’ﬁ;iu Zm:: :Z:,V ulrlB:ib.mii*
rkang Zhu*, Li Jiang*, Xiaoyun Zhang*, Shaokun Zhang', Jiale Liu™
BabyAGlI [1], MetaGPT [2]) served as

Ahmed Awadallah*, Ryen W. White*, Doug Burger*, Chi Wang*!

i n S p i rati O n to d efi n e t h e key S et Of fe at u res i n *Microsoft Research, TPennsy]vania State University
A U t O G e n +University of Washington, ¥ Xidian University

e A reusable framework

,,,,,,,,,,,,,,,, ® oy Plot a chart of Outout:
Conversable agent ; o | i : - e TESLA [ o pu

,,,,,,,,,,,, . stock price change
} i = == L - ¥TD. H /f
| [ [ ) I ' ' ] e 1

I

,,,,,,,, Execute the ooy

* Flexible agent conversation patterns MuttAgont Conversations N Erwpetone | & G, e o %

nymnnce is not ©  thange!
____________ [ F@ e @ instelled s F Got it Here is the (G
= | s H H= Sorry! Please First ised code ... =
___________________ = = 8. pip irr?slnllyﬂnnn:z £ A Lomeiows
‘ o H 1 N - - B O ™~ 7 / $ \ ~oo and |hen':);s§:;: 7 oytput:
¢ d to b It | —= = @ @ @ @ M
e execu I n Ca a I I : ! = ‘9 = = @ @D 1nstalling..
] ] &)
e ] Joint chat Hierarchical chat e
Agent Customization Flexible Conversation Patterns Example Agent Chat

. - - -

H u m a n I n t h e Ioo p Figure 1: AutoGen enables diverse LLM-based applications using multi-agent conversations. (Left)
AutoGen agents are conversable, customizable, and can be based on LLMs, tools, humans, or even
a combination of them. (Top-middle) Agents can converse to solve tasks. (Right) They can form
a chat, potentially with humans in the loop. (Bottom-middle) The framework supports flexible
conversation patterns.
[1] Qingyun Wu et al. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation. arXiv:2308.08155, 2023.

[2] BabyAGlI. Github — babyagi. https://github.com/yoheinakajima/babyagi, 2023
[3] Hong et al. Metagpt: Meta programming for multi-agent collaborative framework. arXiv:2308.00352, 2023.

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 ’



Cognitive architecture as the key value of an agentic system

Al

* FMs have become more powerful over time and will continue to improve
(e.g., reasoning capabilities with o1)

* These models are available to everyone building multi-agent systems

* The key value (IP) of an agentic system thus lies in its cognitive
architecture and not exactly in the models themselves

* How many agents should my system have?
 What roles should they play?

 What model should each agent use?
 How should agents communicate?

* How much human intervention should be prescribed?

* How to best manage (the different types of) memory?

* And those are fundamentally an SE problem! (an open problem btw)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &2



Overview of the session

] Deep dive into Microsoft AutoGen with examples

Deep dive based on Microsoft’s AutoGen tutorial https://microsoft.github.io/autogen/0.2/docs/tutorial Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024

)




Docs v  Examples v Other Languages v+  Blog GitHub @  Twitter ¥ -:f:i' Q, Search ctrl || K

AutoGen

An Open-Source Programming Framework for Agentic Al

Multi-Agent Conversation
Framework

AutoGen provides multi-agent conversation
framework as a high-level abstraction. With this
framework, one can conveniently build LLM

workflows.

Current stable version of

A new event driven,
AutoGen (autogen-

agentchat~=0.2) AutoGen

Jol

Easily Build Diverse Applications

AutoGen offers a collection of working systems
spanning a wide range of applications from

various domains and complexities.

asynchronous architecture for

@@

Enhanced LLM Inference &
Optimization

AutoGen supports enhanced LLM inference APIs,
which can be used to improve inference

performance and reduce cost.

pip install autogen-agentchat™~=0.2

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024




Key Concepts

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Key concepts

Agents

* An entity that can send and receive messages to and from other agents in its environment

* ConversableAgent is a built-in agent that supports the following components (which can be turned on and
off):

e Alist of LLMs

* A code executor

e A function/tool executor

A component for keeping human-in-the-loop

* LLMs, for example, enable agents to converse in natural languages and transform between structured and
unstructured text

* The generate_reply method takes a question and generates a reply




ConversableAgent
import os
from autogen import ConversableAgent

agent = ConversableAgent(
"chatbot”,
1lm_config={"config list": [{"model": "gpt-4", "api_key": os.environ.get("OPENAI API KEY")}]},
code_execution_config= 5
function_map= 5
human_input_mode="NEVER",

generate_reply

reply = agent.generate reply(messages=[{"content”: "Tell me a joke.", "role": "user"}])
print(reply)

Sure, here's a light-hearted joke for you:

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,

Why don't scientists trust atoms?

Because they make up everything!




Key concepts

Personas and Conversations

It is common for agents to embody a persona

A persona is typically assigned to an agent using a system prompt

e A system prompt is defined with the system_message during ConversableAgent instantiation

Agents participate in conversations or chat with each other

A conversation is a sequence of messages exchanged between agents

Conversations are employed to make progress on a task

A conversation is started using the agent.initiate_chat(recipient, message, max_turns, ...) method

recipient is the agent receiving the message
message is the message being sent

max_turns indicates the number of conversation round trips




Let us have two agents put on a comedy show!

cathy = ConversableAgent(

"cathy" ,

system message="Your name is Cathy and you are a part of a duo of comedians."”,

11m_config={"config_list": [{"model"”: "gpt-4", "temperature": 6.9, "api_key": os.environ.get("OPENAI_API_KEY")}]},
human_input_mode="NEVER",

ConversableAgent(
system _message="Your name is Joe and you are a part of a duo of comedians.",

1lm_config={"config_list": [{"model"”: "gpt-4", "temperature": 6.7, "api_key": os.environ.get("OPENAI_API KEY")}]},
human_input_mode="NEVER",

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



result = joe.initiate_chat(cathy, message="Cathy, tell me a joke.", max_turns=2)

joe (to cathy):

Cathy, tell me a joke.

cathy (to joe):
Sure, here's one for you:
Why don't scientists trust atoms?

Because they make up everything!

joe (to cathy):
Haha, that's a good one, Cathy! Okay, my turn.
Why don't we ever tell secrets on a farm?

Because the potatoes have eyes, the corn has ears, and the beans stalk.

cathy (to joe):
Haha, that's a great one! A farm is definitely not the place for secrets. Okay, my turn again.
Why couldn't the bicycle stand up by itself?

Because it was two-tired!

First turn

Second turn

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,



Terminating
Conversations

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Terminating Conversations (w/o human-in-the-loop)

* An any complex, autonomous workflows it’s crucial to know when/how to stop the workflow
e Task is completed
* Process has consumed predetermined resources
* Two options
* As a conversation parameter (parameter to initiate_chat)
* max_turns: As we saw, this determines the number of conversation round trips
e As an agent parameter (parameter to ConversableAgent)

* max_consecutive_auto_reply: Triggers termination if the number of automatic responses to the
same sender exceeds a threshold

* is_termination_msg: Triggers termination if the received message satisfies a particular condition.
More specifically, it is a function that takes a message in the form of a dictionary and returns a
boolean value indicating if this received message is a termination message.

* |f NONE (default) is provided, is_termination_msg is internally set to “TERMINATE”

* That is, by default, this agent stops responding once it receives a “TERMINATE” message

=

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &



joe = ConversableAgent(
“joe",
system message="Your name is Joe and you are a part of a duo of comedians.”,
11lm_config={"config_list": [{"model"”: "gpt-4", "temperature": ©.7, "api_key": os.environ.get("OPENAI_API Ki|
human_input_mode="NEVER",
max_consecutive_auto_reply=1,

result = joe.initiate_chat(cathy, message="Cathy, tell me a joke.")

joe (to cathy):

Cathy, tell me a joke.

Using
max_consecutive_auto_reply = (o )
Sure, here's one for you:

Why don't scientists trust atoms?

Because they make up everything!

Note how Joe
replies only Joe (fo cathy):
one to Cathy Haha, that's a good one, Cathy! Okay, my turn.

Why don't we ever tell secrets on a farm?

Because the potatoes have eyes, the corn has ears, and the beans stalk.

cathy (to joe):

Oliva, Alware
Leadership

Why couldn‘t the bicycle stand up by itself? Bootcamp,
Toronto, Canada,

Haha, that's a great one! A farm is definitely not the place for secrets. Okay, my turn again.

Because it was two-tired!




Using is_termination_msg

joe = ConversableAgent(

" n
2

system_message="Your name is Joe and you are a part of a duo of comedians.”,

1lm_config={"config_list": [{"model": "gpt-4", "temperature": 0.7, "api_key": os.environ.get("OPENAI_API Ki
human_input_mode="NEVER",

is_termination_msg=Lambda msg: "good bye" in msg["content"].lower(),

result = joe.initiate_chat(cathy, message="Cathy, tell me a joke and then say the words GOOD BYE.")

joe (to cathy):

Cathy, tell me a joke and then say the words GOOD BYE.

cathy (to joe):
Why don't scientists trust atoms?

Because they make up everything! Oliva, Alware

Leadership
GOOD BYE! Bootcamp,
Toronto, Canada,




Another example: Guess the number game

import os
from autogen import ConversableAgent

agent_with_number = ConversableAgent(
"agent_with_number”,
system_message="You are playing a game of guess-my-number. You have the "
"number 53 in your mind, and I will try to guess it. "
"If I guess too high, say 'too high', if I guess too low, say 'too low'. ",
1lm _config={"config list": [{"model": "gpt-4", "api_key": os.environ["OPENAI_API KEY"]}]},
is_termination_msg=Lambda msg: "53" in msg["content”],
human_input_mode="NEVER",

agent_guess_number = ConversableAgent(
"agent_guess_number™,
system_message="I have a number in my mind, and you will try to guess it. "
"If I say 'too high', you should guess a lower number. If I say 'too low', "
"you should guess a higher number. ",
1lm config={"config list": [{"model":

"gpt-4", "api_key": os.environ["OPENAI_API KEY"]}]},
human_input_mode="NEVER",

result = agent _with_number.initiate chat(
agent_guess_number,

message="1 have a number between 1 and 10@. Guess it!",

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,




agent_with_number (to agent_guess_number): agent_guess_number (to agent_with_number):

I have a number between 1 and 100. Guess it! Is it 57?

agent_guess_number (to agent_with_number): agent_with_number (to agent_guess_number):
Too high.

agent_with_number (to agent_guess_number): agent_guess_number (to agent_with_number):
Is it 54°?

Too low.

agent_guess_number (to agent_with_number): agent_with_number (to agent_guess_number):

Too high.

agent with number (to agent guess number): agent_guess_number (to agent with_number):

i ?
Too high. Is it 52°

t_with b t t b 3
agent_guess_number (to agent_with_number): agent_with_number (to agent_guess_number)

Too low.

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,

agent_guess_number (to agent_with_number):

agent_with_number (to agent_guess_number):

Is it 53?
Too high.




Human-in-the-loop

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Human-in-the-loop S

Human-in-the-loop Messages = Human-  gip
in-the- =———p Auto-reply
* Many applications require human feedback to steer Human Reply < loop ﬁlﬂm
agents in the right direction, specify goals, or Executor, etc.)
terminate conversations. Auto Reply <
* AutoGen offers this capability via Human input
modes v
Terminate

Human input modes

« NEVER: human input is never requested. Meant for fully autonomous agents.
» ALWAYS: human input is always requested (max_consecutive_auto_reply is ignored) and the human can
choose to either
* Do nothing and trigger an auto-reply (i.e., the agent replies)
* Reply to the message
* Terminate the conversation (by typing exit)

» TERMINATE (default): human input is only requested when a termination condition is met. If the human
chooses to reply, the conversation continues and the counter used by max_consecutive_auto_reply is reset.

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &




human_input_mode = ALWAYS

* No LLM used for human_proxy, so this is a human <-> agent conversation

human_proxy = ConversableAgent(
“human_proxy",
1lm_config= ,
human_input_mode="ALWAYS",

result = human_proxy.initiate chat(
agent_with_number,
message="10",

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 202 ;



human_proxy (to agent_with_number):

agent_with_number (to human_proxy):

Too low.

agent_with_number (to human_proxy):

Human is prompted
to enter a response
each time

agent_with_number (to human_proxy):

Too high.

human_proxy (to agent_with_number):

I give up
Oliva, Alware
Leadership
agent_with_number (to human_proxy): Bootcamp

Toronto, Canada,
That's okay! The number I was thinking of was 53.




human_input_mode = TERMINATE

Human input is requested

when a termination »2gent_with number”,

condition is triggered’ SO system _message="You are playing a game of guess-my-number. "
d t tt t t "In the first game, you have the "

nee 0 pay attention to "number 53 in your mind, and I will try to guess it. "

those Conditions_ "If I guess too high, say 'too high', if I guess too low, say 'too low'. ",
11lm_config={"config_list": [{"model"”: "gpt-4", "api_key": os.environ["OPENAI_API_KEY"]}]},

If the human chooses to max_consecutive_auto_reply=1,
’ is_termination_msg=Lambda msg: "53" in msg["content"],
reply' the agent > rep_ly human_input_mode="TERMINATE",
(auto reply) counter is )
reset

agent_with_number = ConversableAgent(

agent_guess_number = ConversableAgent(

If the human chooses to "agent_guess_number”,

. . system_message="I have a number in my mind, and you will try to guess it. "
Sklp, the agent replles "If I say 'too high', you should guess a lower number. If I say 'too low', "

and the agent’s reply "you should guess a higher number. ",
. 11m_config={"config_list": [{"model™: "gpt-4", "api_key": os.environ["OPENAI_API_KEY"]}]},
(aUtO repIY) counter is human_input_mode="NEVER",

incremented. )

|f the human ChOOSGS to result = agent_with_number.initiate_chat(

. agent_guess_number,
termlnate.’ the message="I1 have a number between 1 and 100. Guess it!",
conversation ends

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



agent_with_number (to agent_guess_number): agent_guess_number (to agent_with_number):

I have a number between 1 and 180. Guess it! Is it 55°?

agent_guess_number (to agent_with_number): agent_with_number (to agent_guess_number):

still too high, but you are very close.

agent_guess_number (to agent_with_number):
>>>>>>>> USING AUTO REPLY...
agent_with_number (to agent_guess_number): Is it 52°?

Too low. e

>>>>>>>> USING AUTO REPLY...
agent_guess_number (to agent_with_number): agent_with_number (to agent_guess_number):

Is it 75? Too low.

agent_with_number (to agent_guess_number): agent_guess_number (to agent_with_number):

It is too high my friend. Human answers Is it 54°?

agent_guess_number (to agent_with_number): agent_with_number (to agent_guess_number):

Is it 6@°? Almost there!

Oliva, Alware
-------------------------------------------------------------------------------- Leadership

agent_guess_number (to agent_with_number): Bootcamp,

>>>>>>>> USING AUTO REPLY... Toronto,

agent_with_number (to agent_guess_number): Is it 53? Canada, 2024

Too high.




Code Executors

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Code Executors

* A code executor is a component that takes input messages containing code blocks, performs code execution,
and outputs messages with the results

* Two types of code executors
 Command Line: runs on a shell, each code block is executed in a new process (stateless)

e Jupyter Kernel: runs on a stateful jupyter kernel (e.g., you can define one variable in a code block and
use it in another block)

* Each code executor can run either locally or on a Docker container

Local
setup

DANGER

Docker
setup

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,




Command Line Executor
with a Local Setup

import tempfile

from autogen import ConversableAgent
from autogen.coding import LocalCommandlLineCodeExecutor

temp_dir = tempfile.TemporaryDirectory()

executor = LocalCommandLineCodeExecutor(
timeout=10,
work_dir=temp_dir.name,

code_executor_agent = ConversableAgent(
"code_executor_agent",
11lm_config= s
code_execution_config={"executor™: executor},
human_input_mode="ALWAYS",

message_with_code_block = """This is a message with code block.
The code block is below:

"7 “python

import numpy as np

import matplotlib.pyplot as plt

X = np.random.randint(0, 100, 100)

y = np.random.randint(@, 100, 100)

plt.scatter(x, y)

plt.savefig('scatter.png')

print('Scatter plot saved to scatter.png')

This is the end of the message.

reply = code_executor_agent.generate_reply(messages=[{"role": "user", "content": message_with_code_bl

print(reply)

>>>>>>>> NO HUMAN INPUT RECEIVED.
>>>>>>>> USING AUTO REPLY...

>>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...
exitcode: @ (execution succeeded)

Code output:

Scatter plot saved to scatter.png

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,
2024




A more interesting example...

Messages with

Code Writer Agent code blocks

Code Executor Agent

>
LLM Code Executor
-

Messages with
execution output

import tempfile

from autogen import ConversableAgent
from autogen.coding import LocalCommandLineCodeExecutor

Same
as
executor = LocalCommandLineCodeExecutor( t)EEf()FGE

timeout=10, S—
work_dir=temp_dir.name,

temp_dir = tempfile.TemporaryDirectory()

code_executor_agent = ConversableAgent(
"code_executor_agent”,
11lm_config= ,
code_execution_config={"executor": executor},
human_input_mode="ALWAYS"

code_writer_system_message = """You are a helpful AI assistant.

Solve tasks using your coding and language skills.

In the following cases, suggest python code (in a python coding block) or shell script (in a sh codin
1. When you need to collect info, use the code to output the info you need, for example, browse or se
2. When you need to perform some task with code, use the code to perform the task and output the resu
Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be cl
When using code, you must indicate the script type in the code block. The user cannot provide any oth
If you want the user to save the code in a file before executing it, put # filename: <filename> insid
If the result indicates there is an error, fix the error and output the code again. Suggest the full
When you find an answer, verify the answer carefully. Include verifiable evidence in your response if
Reply 'TERMINATE' in the end when everything is done.

mun

code_writer_agent = ConversableAgent(
"code_writer_agent",
system_message=code_writer_system_message,
1lm_config={"config_list": [{"model"”: "gpt-4", "api_key": os.environ["OPENAI_API_KEY"]}1},
code_execution_config= ,

Oliva, Alware
Leadership
Bootcamp,

chat_result = code_executor_agent.initiate_chat( Toronto, Canada,
code_writer_agent, 2024

message="Write Python code to calculate the 14th Fibonacci nhumber.",




code_executor_agent (to code_writer_agent):

Write Python code to calculate the 14th Fibonacci number.

>>>>>>>> USING AUTO REPLY...
code_writer_agent (to code_executor_agent):

Sure, here is a Python code snippet to calculate the 14th Fibonacci number. The Fibonacci series is a

" “python
def fibonacci(n):
if(n <= 0):
return "Input should be a positive integer."
elif(n = 1):
return @
elif(n = 2):
return 1
else:
fib = [0, 1]
for 1 in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib[n-1]

print(fibonacci(14))

This Python code defines a function ~fibonacci(n)  which computes the n-th Fibonacci number. The funct

>>>»>»>> NO HUMAN INPUT RECEIVED.
>>>>>>>> USING AUTO REPLY...

>>>>»»>>> EXECUTING CODE BLOCK (inferred language is python)...
code_executor_agent (to code_writer_agent):

exitcode: @ (execution succeeded)
Code output:

>>>>>»>>> USING AUTO REPLY...
code_writer_agent (to code_executor_agent):

Great, the execution was successful and the 14th Fibonacci number is 233. The sequence goes as follows
T hope this meets your expectations. If you have any other concerns or need further computations, feel

TERMINATE

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 :




code_executor_agent (to code_writer_agent):
Write Python code to calculate the 14th Fibonacci number.

>>>>>>>> NO HUMAN INPUT RECEIVED.

ss>»»>=> USING AUTO REPLY. .. >>>»»>>> USING AUTO REPLY...

code_writer_agent (to code_executor_agent):
4 4 >>>>»>>> EXECUTING CODE BLOCK (inferred language is python)..

Sure, here is a Python code snippet to calculate the 14th Fibonacci number. The Fibonacci series is a Code_executor_agent (to code writer agent):

exitcode: @ (execution succeeded)

~ python Code output:

def fibonacci(n):
if(n <= 0):
return "Input should be a positive integer."
elif(n = 1):
return @
S e >>>>>»>>> USING AUTO REPLY...
return 1 code_writer_agent (to code_executor_agent):

else:
fib = [0, 1] Great, the execution was successful and the 14th Fibonacci number is 233. The sequence goes as follows
- ?
for 1 in range(2, n):
fib.append(fib[1-1] + fib[1-2])
return fib[n-1]

T hope this meets your expectations. If you have any other concerns or need further computations, feel

TERMINATE

print(fibonacci(14))

This Python code defines a function ~fibonacci(n)  which computes the n-th Fibonacci number. The funct

Is the conversation over?

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 :




It actually takes a few more turns for the conversation to end...

Replying as code_executor_agent. Provide feedback to code_writer_agent. Press enter to skip and use auto-reply, or type 'exit' to end the conversation:
>>5>>5>>>> NO HUMAN INPUT RECEIVED.

>>>>>>>> USING AUTO REPLY...
code_executor_agent (to code_writer_agent):

>>>>>>>> USING AUTO REPLY...
code_writer_agent (to code_executor_agent):

TERMINATE

Replying as code_executor_agent. Provide feedback to code writer_agent. Press enter to skip and use auto-reply, or type 'exit' to end the conversation:

>>>>>>>> NO HUMAN INPUT RECEIVED.

code_executor_agent should define an explicit termination function (e.g., last word in received message is “TERMINATE”)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Command Line Executor
with a Docker Setup

from autogen.coding import DockerCommandLineCodeExecutor

temp_dir = tempfile.TemporaryDirectory()

executor DockerCommandLineCodeExecutor(
image="python:3.12-slim",
timeout=10,
work_dir=temp_dir.name,

code_executor_agent_using_docker = ConversableAgent(
"code_executor_agent_docker™,
11m_config= ,
code_execution_config={"executor": executor},
human_input_mode="ALWAYS",




Tool Use

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Tool Use

What are tools?
* Tools are pre-defined functions that agents can use
e Searching the web, performing calculations, reading files, or calling remote APIs
* Tools provide more control over the agent’s actions (including code generation)
* Tool use is currently only available for LLMs that support OpenAl-compatible tool call API.
How to create tools?
* Tools can be created as regular Python functions
* Make sure to use type hints for arguments and return value of functions
e Also supports pydantic (for more complex schema definitions)
Registering tools
* A tool must be registered with two agents for it to be useful in a conversation.
* The agent registered with the tool’s signature through register_for_llm can create a tool call
* The agent registered with the tool’s function object through register_for_execution can execute the call.

* Tool usage and code execution can be “hidden” within a single agent via nested chats




Let’s create an agent that can call a calculator
First let’s define the python function...

from typing import Annotated, Literal

Oper'ator — Liter‘al[“_'-l'l’ I'I_ll, 'll*l'l’ 'll'/ll]

def calculator(a: int, b: int, operator: Annotated[Operator, "operator"]) -> int:
1f operator == "+":
return a + b
elif operator == "-"
return a - b
elif operator ==
return a * b
elif operator == "/":
return int(a / b)
else:
raise ValueError("Invalid operator")

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Registering
the tool...

(no change in
how an agent
is instantiated)

import os

from autogen import ConversableAgent

assistant = ConversableAgent(
name="Assistant",

system_message="You are a helpful AI assistant.
"You can help with simple calculations. "
"Return 'TERMINATE' when the task is done.",

11lm_config={"config_list": [{"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY"]}]},

user_proxy = ConversableAgent(
name="User",

11lm_config=

’

is_termination_msg=Iambda msg: msg.get("content") 1s not

and "TERMINATE" in msg["content"],
human_input_mode="NEVER",

assistant.register_for_llm(name="calculator"”, description="A simple calculator")(calculator)

user_proxy.register_for_execution(name="calculator")(calculator)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



The tool’s schema is auto-generated by AutoGen
from the function’s typehints...

assistant.llm_config["tools"]

[{'type': 'function',
"function': {'description': 'A simple calculator’,
"'name': 'calculator',
"parameters': {'type': 'object',
"'properties': {'a': {'type': 'integer', 'description': 'a'},
'b': {"type': 'integer', 'description': 'b'},
'operator': {'enum': ['+", '-", "*¥', /'],
"type': 'string',
"description’': 'operator'}},
'required': ['a', 'b', 'operator']}}}]

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



chat_result = user_proxy.initiate_chat(assistant, message="What is (44232 + 13312 / (232 - 32)) * 57?7")

User (to Assistant):

What is (44232 + 13312 / (232 - 32)) * 57

>>>>>>>> USING AUTO REPLY...
Assistant (to User):

***%* Suggested tool call (call_4rE1lPolLgg0YJImkUutbGaSTX1): calculator ***#**

Arguments:

{
"a": 232,
"b": 32,
"operator":

}

kkkkkkkkkkkkkkkkkkkkkkkkkkkkRkRRRkRKkkkkkkkkkkkkkkkkRRRRRRkkkkkkkkkkkkkkkkkk

won

>>>>>>>> EXECUTING FUNCTION calculator...
User (to Assistant):

User (to Assistant):

***xx* Response from calling tool (call_4rE1PolLgg0YJImkUutbGaSTX1) *****
200

33k ok % ok 3 3 o o K K 3K 3K 5K 3K 3K 3K 3K 3 3 o 3 K K oK 3K 3K 5K 3K 3K 3k ok 3k 3 3 ok ok o K 3K oK 5K oK oK 3K 3K 3k ok 3k %k 3 3k 3k 3 K K K oK ok 3k ok ok Kk kK k ok k

>>>>>>>> USING AUTO REPLY...
Assistant (to User):

*¥¥%** Suggested tool call (call_SGtr8tK9A410CIGdCgkKR20v): calculator ****
Arguments:

i
"a": 13312,

"b": 200,
"operator": "/"

ky

& %k o 3k %k ok 3k ok %k ok sk ok 2k ok ok ok 3k %k ok ok 3k ok ok ok ok ok ok Sk ok sk ok 3k ok ok ok ok ok ok ok ok 2k ok 3k ok ok ok 3k ok ok ok 3k ok ok ok ok ok 3k ok 2k ok 3k ok ok 2k ok ok ok ok ok ok ok %k ok ok

>>>>>>>> EXECUTING FUNCTION calculator...
User (to Assistant):

User (to Assistant):

*¥*%** Response from calling tool (call_SGtr8tK9A410CIGdCgkKR20v) *****
66

& ok o 3k %k ok 3k oK %k ok 3k oK 2k ok ok ok 3k K ok ok 3k ok ok ok ok ok 3k Sk ok ok ok 3k ok ok ok ok sk ok ok ok 2k ok 3k ok %k ok 3k ok %k ok 3k ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Conversation
Patterns

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Overview

 Two-agent chat: the simplest form of conversation pattern where two agents chat with
each other.

e Sequential chat: a sequence of chats between two agents, chained together by a carryover
mechanism, which brings the summary of the previous chat to the context of the next
chat.

* Group Chat: a single chat involving more than two agents.

e Several strategies can be used to define the next speaker (agent): round_robin,
random, manual (human selection), and auto (Default, using an LLM to decide).

* Selection of the next speaker can be constrained using allowed and disallowed speaker
transitions

* Selection of the next speaker can be done with a user-defined function (e.g., allowing a
deterministic workflow among agents)

* Nested Chat: package a workflow into a single agent for reuse in a larger workflows.

)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &%



Two-Agent Chat

E.g., "What is triangle inequality?"

Message

Contains:

e Conversation history
*  Human input

* Token cost

-

Chat Result

Oliva, Alware
Chat parameters * Takes a list of messages from the conversation and Leadership

Bootcamp,

E.g., summary_ method-nreﬂecuon_mth_“m . - summarizes them using a call to an LLM (recipient’s LLM).  Toronto,

Canada, 2024
*  Prompt: “Summarize the takeaway from the conversation. <
Do not add any introductory phrases.” (can be customized)




import os

from autogen import ConversableAgent

student_agent = ConversableAgent(
name="Student_Agent",
system_message="You are a student willing to learn.",
1lm_config={"config_list": [{"model": "gpt-4", "api_key":

)

teacher_agent = ConversableAgent(

name="Teacher_Agent",
system_message="You are a math teacher.",

1llm_config={"config_list": [{"model": "gpt-4", "api_key":

chat_result = student_agent.initiate_chat(
teacher_agent,
message="What is triangle inequality?",
summary_method="reflection_with_11lm",
max_turns=2,

os.environ[ "OPENAI_AP,

os.environ[ "OPENAI_AP,

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,



Sequential Chats

This pattern is useful for complex task that can be broken down into interdependent sub-tasks
e Carryover (conversation summary) accumulates as the conversation moves forward, so
each subsequent chat starts with all the carryovers from previous chats.

Chat parameters Chat parameters Chat parameters Chat parameters
Message Message Message Message
T Agent B —> AgentC — AgentD —> AgentE
L—» L L—
Carryover Carryover Carryover 1
I Agent A Agent A Agent A Agent A |
i

A A Oliva, Alware
Leadership
Carryover Bootcamp,

Toronto, Canada,
2024

Carryover




Example: arithmetic operations

with agents chat_results = number_agent.initiate_chats(

L
i

# The Number Agent always "recipient": adder_agent,
"message”: "14",
returns the same numbers.

"max_turns": 2,
"summary_method": "last_msg",

# The Adder Agent adds 1 to each

number it receives. "recipient": multiplier_agent,
"message”: "These are my numbers",
"max_turns": 2,

# The Multiplier Agent multiplies "summary_method": "last_msg",

each number it receives by 2.

"recipient”: subtracter_agent,

H The Subtracter Agent Subtracts 1 "message”: "These are my numbers",

; . "max_turns": 2,
from each number it receives. »summary_method”: "last_msg",

# The Divider Agent divides each "recipient”: divider_agent,

number it receives by 2. "message”: "These are my numbers",
"max_turns": 2,

"summary_method": "last_msg",

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,




print("First Chat Summary: ", chat_results[@].summary)
print("Second Chat Summary: ", chat_results[1].summary)
, chat_results[2].summary)
, chat_results[3].summary)

print("Third Chat Summary:
print("Fourth Chat Summary:

First Chat Summary: 16

Second Chat Summary: 64
Third Chat Summary: 14

62

Fourth Chat Summary: 4

16

3.5

15.5

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 :



Group Chats s s

---------------

* All agents contribute to a single

. AgentB Message Agent B
conversation thread (chat) Group Chat |, Y : Group Chat /
Manager Manager

* Agents share the same context Agent C Agent C

* A GroupChatManager decides who will >
speak next using one of these strategies: Agent D Agent D

° rou nd_robin (1) Select Speaker (2) Agent Speak

* random >
. Agent A
 manual (human selection)

e auto (default, LLM decides). Agent B

* The selection of the next speaker can be Chrap ot essages

constrained Agent C

 The selection of the next speaker can be
customized with a Python function Agent D

(3) Broadcast Message

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 B



Basic recipe for group chat (using ‘auto’)

1) Describe the Agents

To help the GroupChatManager select the next agent, we add a description to the agents that

will engage in the group chat.

If a description is not provided, the GroupChatManager will use the agents’ system_message
(system prompt) to decide the order, which might not be the best choice.

adder_agent.description = "Add 1 to each input number."

multiplier_agent.description = "Multiply each input number by 2."
subtracter_agent.description = "Subtract 1 from each input number.
divider_agent.description = "Divide each input number by 2."
number_agent.description = "Return the numbers given."

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024




Basic recipe for group chat (using ‘auto’)

2) Instantiate a GroupChat

Defines the basic parameters of the chat
The agents list defines the list of agents who will chat
* If round_robin is used, the list order is respected

The speaker_selection_method determines the method for selecting the next speaker (omitted

below, defaults to auto)

The messages list acts as the starting history or context for the conversation among the agents.
* It helps establish any predefined interactions, setup information, or introductory dialogue that

the agents can reference during the chat. (empty in this example)

The max_rounds parameter defines the number of chat rounds (“Select speaker -> agent speaks ->

message is broadcasted”).

from autogen import GroupChat

group_chat = GroupChat(

agents=[adder_agent, multiplier_agent, subtracter_agent, divider_agent, number_|
messages=[ |,
max_round=6,

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,
2024 | e

ey
0,9 /*




Basic recipe for group chat (using ‘auto’)

3) Instantiate a GroupChatManager

* A GroupChatManager takes a GroupChat as input (i.e., the group chat that it will manage)

* The auto mode uses an LLM to select the next speaker based on their descriptions, so we need
to specify an LLM for this agent

from autogen import GroupChatManager

group_chat_manager = GroupChatManager(

groupchat=group_chat,
llm_config={"config_list": [{"model": "gpt-4", "api_key": os.environ["OPENAI_AP

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 @&2A



Basic recipe for group chat (using ‘auto’)

4) Initiate the chat

We initiate the chat as usual in a two-agent style

In this example, one of the agents in the group (humber agent) sends a message to the group
chat manager

The group chat manager will then run the group chat internally and terminate the two-agent
chat when the internal group chat is done.

Since the number_agent is selected to speak by us, it counts as the first round of the group
chat.

chat_result = number_agent.initiate_chat(
group_chat_manager,

message="My number 1s 3, I want to turn it into 13.",
summary_method="reflection_with_11m",

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 @&2A



In practice, it is as if
a team member is
asking a question the

whole team

(and a moderator
coordinates the
conversation)!

Number_Agent (to chat_manager):

My number is 3, I want to turn it into 13.

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,

2024  pERNE
o




Tailoring Group Chats: Sending Introductions

 The description field of agents helps the GroupChatManager select the next agent
* Does not help the participating agents to know about each other
* If send_introductions is set to True, the agents will introduce themselves to other agents in the
same chat
 Under the hood, the GroupChatManager sends a message containing the agents’ names
and descriptions to all agents in the group chat before the group chat starts.

group_chat_with_introductions = GroupChat(
agents=[adder_agent, multiplier_agent, subtracter_agent, divider_agent, number_
messages=[],
max_round=06,

send_introductions=




Tailoring Group Chats: Constraining Speaker Selection

 Group chat is a powerful conversation pattern, but it can be hard to control if
the number of participating agents is large.

* AutoGen provides a way to constrain the selection of the next speaker by using
the allowed_or_disallowed_speaker_transitions and speaker_transition_type
argument of the GroupChat class.

* Let us see an example...

)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &%



allowed_transitions = {
humber_agent: [adder_agent, number_agent],
adder_agent: [multiplier_agent, number_agent],
subtracter_agent: [divider_agent, number_agent],
multiplier_agent: [subtracter_agent, number_agent],
divider_agent: [adder_agent, number_agent],

constrained_graph_chat = GroupChat(
agents=[adder_agent, multiplier_agent, subtracter_agent, divider_agent, number_
allowed_or_disallowed_speaker_transitions=allowed_transitions,
speaker_transitions_type="allowed",
messages=[ |,
max_round=12,
send_introductions=

constrained_group_chat_manager = GroupChatManager(
groupchat=constrained_graph_chat,
1lm_config={"config_list": [{"model": "gpt-4", "api_key": os.environ["OPENAI_AP

chat_result.= number_agent.initiate_chat( Oliva, Alware
constrained_group_chat_manager, Leadership
message="My number is 3, I want to turn it into 10. Once I get to 10, keep it t Bootcamp,
summary_method="reflection_with_11m", Toronto, Canada,




Multiplier_Agent (to chat_manager):
Number_Agent (to chat_manager): g ot ( B ger)

My number is 3, I want to turn it into 10. Once I get to 10, keep it there.

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Group Chats as part of Sequential Chats

group_chat_manager_with_intros = GroupChatManager(

groupchat=group_chat_with_introductions,
1lm_config={"config_list": [{"model": "gpt-4", "api_key": os.environ["OPENAI_AP

chat_result = number_agent.initiate_chats(

I

"recipient"”: group_chat_manager_with_intros,
"message”: "My number is 3, I want to turn it into 13.",

"recipient": group_chat_manager_with_intros,
"message": "Turn this number to 32.",

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,




3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok 3k 3k 3k 3k 3k 3k 3k sk ok 3k ok 3k 3k ok 3k 3k 3k 3k 3k %k 3k ok ok 3k ok %k %k %k ok

Start a new chat with the following message:
My number is 3, I want to turn it into 13.

With the following carryover:
EEEEEEEE S EEEEEEE EE EEEEEEE EEEEEEEEE EEE R EE L L L
Number_Agent (to chat_manager):

My number is 3, I want to turn it into 13.

Multiplier_Agent (to chat_manager):

14

Subtracter_Agent (to chat_manager):

13

Number_Agent (to chat_manager):

Your number 1is 13.

3k 3k 3k 3k ok 2k ok 3k ok 3k ok 3k 3k 3k ok ok ok ok 3k ok ok 3k 3k ok sk 3k ok sk ok ok ok ok sk ok ok ok sk sk ok ok ok ok sk ok ok ol

Start a new chat with the following message:
Turn this number to 32.

With the following carryover:
Your number is 13.

3k 3k 3 3k 3k 3k 3k sk 3k 3k 3k sk sk 3k 3k sk sk 3k 3k sk sk 3k sk sk sk sk 3k sk sk sk sk sk sk sk ok sk sk skosk ok ok sk sk sk sk oy

Number_Agent (to chat_manager):

Turn this number to 32.
Context:
Your number 1is 13.

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,

Adder_Agent (to chat_manager):

14



Nested Chats

* Encapsulates a complex chat into an atomic unit
(think of it as a subworkflow node)

 Exposes a single conversational interface

* Often needed for scenarios like question-
answering bots and personal assistants

Mechanism:

e After passing the human-in-the-loop component,
the nested chats handler checks if the message
should trigger a nested chat based on conditions
specified by the user.

* If the conditions are met, the nested chats handler
starts a sequence of nested chats specified using the
sequential chats pattern.

* In each of the nested chats, the sender agent is
always the same agent that triggered the nested
chats.

* |nthe end, the nested chat handler uses the results
of the nested chats to produce a response to the
original message.

* By default, the nested chat handler uses the
summary of the last chat as the response.

Reply
F 3

Message

Human}in-the-loop

v

Trigger
True

|

Contexts, Messages

Message

Nested Chat Reply 5

Nested Chats Handler

Auto-reply
components (Code
Executor, LLMs)

Agent A

Chat Results

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024

4 ™
Agent B Agent B Agent B
Chat Chat Chat
Agent A Agent A Agent A
\ Sequential Chats _/
Nested Chats




Step 1. Define the Agents

human_proxy = ConversableAgent(
name="HumanProxy",
11lm _config=False,
human_input_mode="NEVER",

code_writer_agent = ConversableAgent(
name="CodeWriterAgent",
system message="You are a code writer. Generate Python code in Markdown format. Do not show the output or try
to run the code",
1lm _config={"config list": [gpt_ 4o config]},
human_input_mode="NEVER",

code_executor_agent = ConversableAgent(
name="CodeExecutorAgent"”,
system message="You are a code executor that runs Python code locally and reports the results.”,
code_execution_config={"use _docker"”: False, "work dir": temp_dir},
human_input_mode="ALWAYS"

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Step 2. Define the e
nested chats {

"recipient”: code writer_agent,
"summary_method": "last msg",
"max_turns™: 1,

"sender”: code_writer_agent,

"recipient”: code_ executor_agent,

"message”: "Execute the provided Python code and return the output.”,
"summary_method": "last msg",

"max_turns”: 1,

Step 3. Register the human_proxy .register_nested_chats(
nested chats nested_chats,

trigger=1lambda sender: sender not in [code writer_agent, code executor_agent]

Step 4- ASk the reply = human_proxy.generate reply(
question (m|m|ck|ng messages=[{"role": "user", "content": "Write code to turn the number 3 into 7 by adding 4."}

a human)
print(f”"The final answer is {reply}"”)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



CodeWriterAgent (to CodeExecutorAgent):

Execute the provided Python code and return the output.
Context:

“ " “python

# Start with the number 3

number = 3

HumanProxy (to CodeWriterAgent):

Write code to turn the number 3 into 7 by adding 4.

# Add 4 to the number

) number += 4
CodeWriterAgent (to HumanProxy):

# The resulting number should be 7

" python print(number)
# Start with the number 3

number = 3

# Add 4 to the number Replying as CodeExecutorAgent. Provide feedback to CodeWriterAgent. Press enter
number += 4

# The resulting number should be 7

print(number)
CodeExecutorAgent (to CodeWriterAgent):
exitcode: @ (execution succeeded)

Code output:
7

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Agent Memory
with MemO

-..'-.‘

£ memQO

https://docs.memO.ai/integrations/a Utogen#aUtogen Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 BC A



Mem0O: How does it work?

* MemO leverages a hybrid database approach to manage and retrieve long-term memories for Al agents and
assistants.

* Each memory is associated with a unique identifier, such as user_id/agent_id/session_id, allowing MemO to
organize and access memories specific to an individual or context.

Adding memories

 When a message is added to the MemO using add() method, the system extracts relevant facts and preferences
and stores it across data stores: a vector database, a key-value database, and a graph database.

* This hybrid approach ensures that different types of information are stored in the most efficient manner,
making subsequent searches quick and effective.

Recalling memories
 When an Al agent or LLM needs to recall memories, it uses the search() method.
* Mem0O then performs search across these data stores, retrieving relevant information from each source.

* This information is then passed through a scoring layer, which evaluates their importance based on relevance,
importance, and recency. This ensures that only the most personalized and useful context is surfaced.

* The retrieved memories can then be appended to the LLM’s prompt as needed, making responses personallzed
and relevant. %
Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 @A

—— BOOTCAMP —




Storing Conversations in Memory

Add conversation history to MemO for future reference:

conversation
{"role":
{"role":
{"role":
{"role":

{"role":

= [

"assistant", "content": "Hi, I'm Best Buy's chatbot! How can I help yo
"user", "content": "I'm seeing horizontal lines on my TV."},
"assistant", "content": "I'm sorry to hear that. Can you provide your
"user", "content": "It's a Sony - 77\" Class BRAVIA XR A8GK OLED 4K UHI

"assistant", "content": "Thank you for the information. Let's troubles

memory_client.add(messages=conversation, user_id=USER_ID)

print("Conversation added to memory.")

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 202 :



Retrieving and Using Memory

Create a function to get context-aware responses based on user’s question and previous

interactions:

def get_context_aware_response(question):
relevant_memories = memory_client.search(question, user_id=USER_ID)
context = "\n".join([m["memory"] for m in relevant_memories])

prompt = f"""Answer the user gquestion considering the previous interactions:
Previous interactions:
{context}

Question: {question}

mon

reply = agent.generate_reply(messages=[{"content”: prompt, "role": "user"}])
return reply

Oliva, Alware

question = "What was the issue with my TV?" Leadership
Bootcamp,

answer = get_context_aware_response(question) Toronto, Canada,

print("Context-aware answer:", answer)




Multi-Agent Conversation

For more complex scenarios, you can create multiple agents:

manager = ConversableAgent(
"manager",
system_message="You are a manager who helps in resolving complex customer issues
1lm_config={"config_list": [{"model": "gpt-4", "api_key": OPENAI_API_KEY}]1},
human_input_mode="NEVER"

escalate_to_manager(question):
relevant_memories = memory_client.search(question, user_id=USER_ID)
context = "\n".join([m["memory"] for m in relevant_memories])

pr‘ompt — .FHII"
Context from previous interactions:
{context}

Customer question: {question}

As a manager, how would you address this issue?

manager_response = manager.generate_reply(messages=[{"content": prompt, "role":

return manager_response

Oliva, Alware

Leadership
complex_question = "I'm not satisfied with the troubleshooting steps. What else can Bootcamp,
manager_answer = escalate_to_manager(complex_question) Toronto, Canada,

2024 ;

print("Manager's response:", manager_answer)




Overview of the session

] Creating an AutoGen playground for experimentation

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024

)




Ollama

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Ollama in a Nutshell

e Ollama: Local Al Model Hub

e Ollama is a platform for discovering, running, and managing FMs (typically LLMs)
directly on personal devices. It ensures privacy by operating offline and enables Al
model use without internet connectivity.

e Efficient Resource Utilization

* Ollama intelligently selects between CPU and GPU based on hardware availability,
model size, and user configurations.

* If a compatible GPU is available, Ollama defaults to it; otherwise, it uses the CPU.

* For large models, it may split processing between GPU and CPU to optimize
performance.

e Accessible and Flexible

* With a user-friendly interface across operating systems, Ollama allows both developers
and non-developers to experiment with powerful Al tools seamlessly on local
machines.

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



"@'? Blog  Discord  GitHub Q  Search models Models  Signin

.@.

Get up and running with large
language models.

Run Llama 3.2, Phi 3, Mistral, Gemma 2, and

other models. Customize and create your own.

Download |

Available for macQOS, Linux, and
Windows




Download Ollama

P s} .-
S =
macOS Linux Windows

Install with one command:

curl -fsSL https://ollama.com/install.sh | sh m

View script source » Manual install instructions

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &2



Download Ollama

Also works & -
in WSL2! © macOS Windows

Install with one command:

curl -fsSL https://ollama.com/install.sh | sh m

View script source » Manual install instructions

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024

T

—— BOOTCAMP —



llama3.2

Meta's Llama 3.2 goes small with 1B and 3B models.
tools 1b  3b
&, 1.9M Pulls O Updated 4 weeks ago

3b v Q 63 Tags ollama run 1llama3.2 I'n
Updated 4 weeks ago a80c4f17acd5 - 2.0GB
model arch llama - parameters 3.21B - quantization Q4_K_M 2.0GB
params { "stop": [ "<|start_header_id|>", "<|end header_id|>", "<|eot_ i.. 96B
template <|start_header id|>system<|end header_id|> Cutting Knowledge Dat.. 1.4kB
license ¥*¥L1lama 3.2%* **Acceptable Use Policy** Meta is committed to pro.. 6.0kB
license LLAMA 3.2 COMMUNITY LICENSE AGREEMENT Llama 3.2 Version Release .. 7.7kB : ;

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 A5

— BOOTCAMP —



llama3.2

Watch out for model hash/ID!

Meta's Llama 3.2 goes small with 1B and 3B models.
tools 1b 3b
& 1.9M Pulls (O Updated 4 weeks ago

3b-instruct-q3_K_L
adcbc7b3c10e » 1.8GB » 4 weeks ago

63 Tags 3b-instruct-q3_K_M
feadb4677930 « 1.7GB « 4 weeks ago

latest

ag8@caf17acds » 2.0GB « 4 weeks ago 3b-instruct-q3 K S
860e23062c32 « 1.5GB « 4 weeks ago

Tb 3b-instruct-q4_0

baf6a787fdff « 1.3GB « 4 weeks ago 9b9453afbdd6 « 1.9GB « 4 weeks ago

3b 3b-instruct-q4_1

a8@c4f17acd5 » 2.0GB - 4 weeks ago €916c5139ab6 + 2.1GB - 4 weeks ago

. 3b-instruct-q4_K_M
1b-|nstruct-fp16 a80c4f17acd5 « 2.0GB « 4 weeks ago
2887c3d@3e74 « 2.5GB « 4 weeks ago

3b-instruct-q4_K_S
1b-instruct-q2 K 8012089878c9 « 1.9GB « 4 weeks ago
3718017cfd4e » 581MB - 4 weeks ago

3b-instruct-g5_0

fa2b62a5f96d + 2.3GB » 4 weeks ago
1b-instruct-q3_K_L

1a709e91d2fb « 733MB « 4 weeks ago 3b-instruct-q5_1
0452394ac7c9 « 2.4GB « 4 weeks ago
1b-instruct-q3_K_M

8459ea7be88F + 691MB « 4 weeks ago 3b-instruct-q5_K_M
7709c7357e6d « 2.3GB - 4 weeks ago

1b-instruct-q3_K_S 3b-instruct-q5_K_S

109ea9f8F55f » 642MB - 4 weeks ago 070 F2£873¢2¢C » 2.3GB » 4 weak . g
‘ cene Ufiva, Alware Leadership Bootcamp, Toronto, Canada, 2024




AutoGen + Ollama

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



from autogen import AssistantAgent, UserProxyAgent

Iconfig_list = [ I
I :
I "model": "codellama", :
I "base_url”: "http://localhost:11434/v1", |
: "api_key": "ollama", I
1} :
17 i

assistant = AssistantAgent("assistant"”, llm_config={"config_list":
config_list})

user_proxy = UserProxyAgent("user_proxy", code_execution_config={"work_dir":
"coding", "use_docker": False})
user_proxy.initiate_chat(assistant, message="Plot a chart of NVDA and TESLA

stock price change YTD.")

i

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &@ASE



AutoGen
Studio

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Fard)

guestuser

AutoGen Studio s Guest User
I A Q @

Build Multi-Agent Apps Build Playground Gallery

Workflow : : e o S ;
© create a 4 page pdf brochure on coffee from different parts of the world with some description of origins. E.g Ethiopian coffee may be in
Select or create an agent workflow. a glass on a table with a lush green forest in the background.

General Agent Workflow AGENT
Create new workflows here The PDF brochure titled "Coffee_Brochure.pdf" has been successfully created. It includes images and descriptions of coffee from
. Ethiopia, Colombia, Brazil, and Vietnam, assembled into a 4-page document. Your brochure on coffee from different parts of the world is
& Sessions now ready. TERMINATE

Create a new session or select an existing
session to view chat.

ada9e3bf-4079-4f66-8c8e-6a3 ...
JE

[ij delete @ publish

~ Agent Messages (10 messages) | 2 mins 39 secs

~ Results (8 files)

dotdlarioide,a002.adiso8d O Coffee._Brochure.pdf B 77d9370c-1fe1-4658-a79a-ab789 (Y 7ab49bl1-ceda-4d5f-91a3-0085b [ a24eea2a-8d7c-4855-a128-953b
ARG = : 0c93a6b.png 2f574b6.png 08b0bf41.png

[i] delete @ publish

680d8f0c-3e8f-4bb2-8c06-b54 ...
19 hours ago

{ij delete @& publish PDF
L

< 6d3319d6-8041-49e1-ach5-439f
084440cbh.png

[3) generate_more_images.py [&) create_pdf_brochure.py [2) generate_images.py

Blank slate? Try one of the example prompts below
Stock Price Sine Wave Markdown m
ook

Maintained by the AutoGen Team. Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 i

< close sidebar




Overview of the session

-1 Other agentic development platforms

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024

)




Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



Crew

Agents have theinert
ability of reach out to

another to delegate Al Agents Al Agents
work or ask questions

Processes define how
agents will work together.
Al Agents How tasks will be assigned.
Interaction with each other.
How they will perform work.

Tasks can override agent

tool with specific ones
Task Task that should be used and

also have a specific
agent tackle them.

https://www.crewai.com/




agents.yaml

researcher:

role: >
{topic} Senior Data Researcher

goal: >
Uncover cutting-edge developments in {topic}

backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.

reporting_analyst:

role: >

{topic} Reporting Analyst

goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,



tasks.yaml

research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given

the current year is 2024.

expected_output: >
A list with 10 bullet points of the most relevant information about {topic}

agent: researcher

reporting_task:

description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information
Formatted as markdown without '
agent: reporting_analyst

output_file: report.md

Oliva, Alware
Leadership
Bootcamp,
Toronto, Canada,
2024



https://github.com/openai/swa rm Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 BC A



Swarm (experimental, educational)

An educational framework exploring ergonomic, lightweight multi-agent
orchestration.

/A Warning

Swarm is currently an experimental sample framework intended to explore
ergonomic interfaces for multi-agent systems. It is not intended to be used
In production, and therefore has no official support. (This also means we will
not be reviewing PRs or issues!)

The primary goal of Swarm is to showcase the handoff & routines patterns
explored in the Orchestrating Agents: Handoffs & Routines cookbook. It is

not meant as a standalone library, and is primarily for educational purposes.

=

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &¥



LangGraph

€ LangGraph Products v Methods v Resources v Docs v Company v Pricing  Getademo |

gr,"

|

Signup
i

Balance agent
control with agency

Gain precision and control with LangGraph to build agents that
reliably handle complex tasks.

Get started with Python { Get started with JavaScript )

https://www.langchain.com/langgraph Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024



- Controllable cognitive
(s ) architecture for any task

LangGraph'’s flexible framework supports diverse control flows - single

assistant_tools |«-------------- | assistant f--------------e- - agent, multi-agent, hierarchical, sequential - and robustly handles

realistic, complex scenarios.

Ensure reliability with easy-to-add moderation and quality loops that

prevent agents from veering off course.

Use LangGraph Platform to templatize your cognitive architecture so that
tools, prompts, and models are easily configurable with LangGraph

Platform Assistants.
[ leave_write_sequence J

See the docs 7




Popularity

Primary Use Case

Platform Focus

Collaboration Model

Customization Level

Deployment

User Interface

AutoGen

32.4k stars

Autonomous multi-
agent systems

Autonomous agent
interaction

Multi-agent
autonomous synergy

Moderate; code-based
custom workflows

Cloud and edge
deployment options

Comprehensive Ul for
agent workflows

CrewAl
20.5k stars

Task automation and
workforce
optimization

Workforce task
allocation

Task assignment
(human-Al blend)

Moderate; predefined
workflows

Cloud and on-premise

Dashboard-focused
for task management

Open Al Swarm

15k stars

Collaborative agent
orchestration

Swarm intelligence
and collaboration

Swarm-based,
collaborative agents

High; modular swarm
architecture

Cloud-native only

Modular,
customizable
dashboards

Langgraph

6.4k stars

Dynamic
conversational agents

NLP model
interactions and flows

Node-based, agent-
to-agent flows

High; tailored
conversation flows

Cloud-based

Visual, node-based
graphing interface

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 '




Overview of the session

] Standardization efforts for FM-powered Agents

8% AN
0.0)"
Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 AT



A standard is needed to enable interoperability

Developers are building agents in their own
way (ad-hoc) or using different frameworks

The lack of a common/unified interface for
agents creates several problems:

 Hard to compare (e.g., benchmark) agents
* Hard to reuse agents

* Hard to develop tools that would work
with any agent out-of-the-box

Due to the increased adoption of agentic
cognitive architectures, agent interoperability
will become a key challenge

)

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024  &EAS:




A IEEE.org | |EEE Xplore Digital Library | IEEE Standards | IEEE Spectrum | More Sites eTools

STANDARDS
IEEE SA E5ion @IEEE

Standards Products & Programs Focuses Get Involved Resources Q Search the IEEE SA Website... MAC ADDRESS

P3394

Standard for Large Language Model Agent Interface

Active PAR

Home > Projects > Standard for Large Language Model Agent Interface

This standard defines natural language interfaces that facilitate communication between Large Language Model wo RKI N G G Ro U P D ETAI Ls

(LLM) applications, agents, and human users. The standard defines a set of protocols and guidelines that enable
applications and agents to effectively communicate with LLM enabled Agents. Thereby, the standard enables
seamless interactions between multiple applications and agents. The standard covers a wide range of aspects
related to LLM usage and application, including but not limited to APl syntax and semantics, voice and text format,
conversational flow, prompt engineering integration, LLM chain of thoughts integration, and APl endpoint

Society IEEE Computer Society
configuration, authentication and authorization for LLM plugins.

Learn More About IEEE Computer Society >

Sponsor Committee C/AISC - Artificial Intelligence Standards Committee

Sponsor Committee C/AISC - Artificial Intelligence Standards Committee
Status Active PAR

Working Group LLM-AAI - Large Language Model Application and Agent Interface
PAR Approval 2023-09-21 >

IEEE Program Christy Bahn

Manager

Contact Christy Bahn >

Working Group Chair  Richard Tong




Agent Protocol by Al Engineer Foundation

* Goal: Develop a unified protocol/interface that is as simple as possible

 The Agent Protocol is an API specification (OpenAPI specification v3) and thus technology agnostic
e List of endpoints that the agent should expose with predefined response schema

 The three base objects of the protocol are Task, Step, and Artifact
 ATask denotes one specific goal for the agent, which can be very specific or very broad

A Step is a single action that the agent should perform. Each step is triggered by calling the
step endpoint of the agent.

* An Artifact is a file that the agent has worked with.
* The protocol has two main endpoints:
« [ap/vl/agent/tasks [POST] - This endpoint is used to create a new task for the agent.

« [ap/v1/agent/tasks/{task_id}/steps [POST] - This endpoint is used to trigger next step of
the task.

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 A

—— BOOTCAMP —



Overview of the session

] Beyond this presentation

Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 &2



Where to go from here?

* Productionizing Agentic FMware is really hard

* Make sure you check Ahmed/Gopi’s talk about the challenges of productionizing Alware
* AgentOps and (Semantic) Observability are crucial!

* Make sure you check Ben’s presentation about Alware Observability on Day 6 (11:00-11:45am)
e About Tools...

* Check out other memory frameworks (e.g., Zep)

e AutoGen 0.4 experimental will be released soon and has a nicer API

e Several cool videos and courses on Youtube / Coursera

* FMArts hands-on
* Autonomous Software Engineers is an interesting use case

e Agentless (why agents?)

* Aide (agents everywhere!)

 SWE-bench

¢‘
Oliva, Alware Leadership Bootcamp, Toronto, Canada, 2024 =': Vi



