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U Choosing the correct FM: What are the concerns of FM selection faced by FMware developers?
U Decision criteria
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Choosing the FM

One of the first decisions faced by developers of
FMware
( Over 700,000 LLMs available on HuggingFace
repository alonel
1 Various levels of capabilities, model sizes,
licenses, ...

N

1. FM capabilities
d Instruction-tuned or text completion?
d Planning and reasoning abilities?
d Tool use support?
d Fill-in-the-Middle capability?
2. Model size
3. License
\.  GPL, AGPL, BSD, Apache, MIT...

Criteria Examples

[1] https://www.marktechpost.com/2024/06/15/with-700000-large-language-models-llms-on-hugging-face-already-where-is-the-future-of-artificial-intelligence-ai-headed Vasilevski et aI., Bala nCing Cost and Quallt\/ in FMware, Toronto, Ca nada, 2024
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Choosing the FM

...criteria focusing on deployment of FMware: iPhone 16 (A18), 35 TOPS NVIDIA A100, 312 TFLOPS
1. FM capabilities

2. Compute costs/limitations of FM inference
e.g. smartphone or a cloud datacenter? —T

Dilemma

Source: Llama 3 Herd of Models 2!
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MMLU (5ot 69.4 § 723 61.1|836 769 70.7f 873 826 851 891  89.9

opqe General MMLU (0-shor, cor) 730 | 7232 605|860 799 698l 886l 787 854 887 883

S m a I Ie r LM S e < 10 bl I I IO n a ra m ete rS enera MMLU-Pro s, cory 483 36.9 | 66.4 563 4920 7330 627 648 740  77.0
ey IFEval 8040 736 576|875 727 6o9Wsssl) 851 843 856  88.0

Code HumanEval esuen 726 54.3 40.2 | 805 T5.6  GR.0 X 73.2 6.6 90.2 92.0

MBPP EvalPlus (o) 728 717 495|860 7SG 820 | 886 728 836 878 905

Math GSMBK (s, 845 767 53.2 | 954 882 RI6 | 96.8 9237 9042 061 06.4

MATH (0..s.c 519 443 13.0 | 68.0 541 431 | 738 411 645 766  TLI

Ressoning ARC Challenge (o 834 B76 712|948 837 837|968 016 964 067 96.7
ﬁ GPQA (ooason. cor) 32.8 288 | 467 333 308 | 511 114 536  59.4

oo h owever.. Too! BFCL 76.1 601 | 84.8 850 | 885 865 883 805 902

ooluse Nexus 385 300 247 | 567 485 37.2 | 587 503 561 457

ZeroSCROLLS, QuALITY | 81.0 90.5 95.2 952 905 905

Long context InfiniteBench /En . MC 65.1 78.2 B3.4 T2.1 82.5
NIH/Multi-needle 98.8 97.5 98.1 100.0 100.0 90.8
Multilingual ~ MGSM or. com) 68.9 532 209|869 7L1 514 | 916 859 905 916

Table 2 Performance of finetuned Llama 3 models on key benchmark evaluations. The table compares the performance of

Bigger models require magnitudes more of
ex p ens i ve com p ute resources fo r | N fe rence cach of thres ‘model size cquivalence lamses, AResalts ﬁZ‘iﬁTiﬁ;’ S-shot prompting t(ni c?.:'tr?er}cz)gﬁf obtained

without CoT. ¢Results obtained using zero-shot prompting.

operations (and other limitations...) 6
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Deploying FMs as part of FMware

J From the perspective of FMware, FM itself is a black box
= FMware system only concerned whether request is served successfully, not how

‘ FMware

” .’ FM(s)

J As long as generated output is of acceptable quality, developers can

discover ways to optimize their requirements
 e.g. use a combination of FMs

Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024 . “'!E
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Deploying FM:
Existing Strategies*

e Improve capability of a selected FM; model-

Mo d e| specific 5
- e Fine-tuning (e.g. DPOLI, SFT, RLHF4]) t%l II—'. 1’.%1
En ha ncement e Prompt engineering (e.g. Chain-of-Thought!2, ao ao

Tree-of-Thoughts!®l)

b
* Ensemble of multiple FMs used to generate output -2 \
: e e.g. LLM-Blender!Z, Blending!8! &
— —_—
SynthESIS e Qutputs used to synthesize final output 7L«:“z"" +
-

e Multiple model inference rounds

e Selects appropriate model based on the input
query or the generated output

e Predictive and non-predictive methods
® e.g. FrugalGPTE], RouteLLM19, Tabillll, Hybrid-LLMX22L,. .

10 ey
* As described in RouterBench 1221 Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024 &%/
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Model Enhancement Methods

Parameter Optimization Methods Prompt Engineering Methods

Prompts Dataset
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(a) Input-Output (c) Chain of Thought (C Self Consistency (d) Tree of Thoughts (ToT) H]

Architecture Methods Prompting (I0)  Prompting (CoT) ~ with CoT (CoT-5C)

Curated Tuned Language
dataset Initial Language Model Model (RL Policy)
A 1 Reinfarcemant Learning
- imizati fge e .
L S0P ¢
Direct Preference Optimization (DPO) g:s $oe |0 co+ved0)
x: “write me a poem about : J: ’ .
the history of jazz”™
¥ e s e 2000

e furry mammal

> —_— finalLM #

—_—w

Mixture-of-Experts

Output ., This means she uses 3 + 4 =7 eggs every c_!a)n
[ 14] Chain-of-thought m Language She sells the remainder for $2 per egg, so in -
( M o E ) prompting model total she sells 7 * $2 = $14 per day.
The answer is $14.
Weights . . e .8 . e e e e e m e e e e
Generated By N N .
Routing within the model to Sef-consistency ﬂ Samplea diversesetof o, Marginaizs out reasoning paths
reasoning paths . to aggregate final answers

Q: If there are 3 cars in the parking
lot and 2 more cars arrive, how many
cars are in the parking lot?

A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3+ 2= 5cars. The answer is 5.

She has 16 -3 - 4 = 9 eggs
left. So she makes $2* 9= | The answer is $18.
$18 per day. 1

the best “expert”

This means she she sells the 1
remainder for $2 * (16 - 4 - 3) The answer is $26.
= $26 per day.

9 e.g. Getting MoRE out of Mixture of

Language Model Reasoning Experts
[~ ] (Si et. al, 2023) 1151

Q: Janet’s ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How
much does she make every day?
A

Language

1
model

She eats 3 for breakfast, so |

she has 16 - 3 = 13 left. Then |

she bakes muffins, so she | The answer is $18.
has13-4=9 eggs left. So

shehas 9eggs * $2=$18. |

Self-consistency [16

12
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Model Enhancement Methods

Limitation
These methods are generally model- and scenario-specific




Deploying FM:
Existing Strategies*

e Improve capability of a selected FM; model-

Mo d e| specific 5
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am I I B B I IS IS I I B DD DS DD DS BEE B B B BEE B BEE O EEm .
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Synthesis Example:

LLM-Blender,

Key ldea:
1. Collects candidate outputs from several FMs
2. Merges top-ranked candidates by combining their strengths

\
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Synthesis Example:

Blending Is All You Need,

JKey Idea

= Qutput generated as a combination of outputs from individual FMs

In practice, where we only have access to a finite set 3.3 Blended
of chat Al systems {01, 0...0y }, one can approx- The objective of our approach is to approximately
imate the continuous integral as a discrete sum- | draw samples from the true ensemble distribution

Algorithm 1 Blended Algorithm

mation. Further, one can assume that Pg(6) is (equation 8). To achieve this approximation, each | 1: k <1

distributed uniformly over the systems such that turn Blended randomly (and uniformly) selects the 2: while true do '

Po(6y) = % , which may be a valid assumption chat Al 9 Fhat generzftes the cfurrent response. This 3: 1), < user’s current input turn

if the set consists of similarly performing models. DEOBESS 1S Hustrated in {\lgorlthm I It can be noted + Sample model parameter 6, ~ P
that during a conversation, the response generated 5 Generate response 77, according to:

This yields the approximation, by a specific chat Al is conditional on all previ-

ous responses generated by the previously selected ri ~ P(r|uig, m1:k—1;6p)
P(rylut, T1x-1) (6) chat Als. This means that the different chat Al
~ Z Po(0)P(ri|urk,r16—1;0)  (7) are able to 111 fluence the output of the I 6: k=Fk+1
9 current response. As a reqult the current response 7: end while
N 18 a blending of inc 1al chat Al strengt T —
:i Z P(rg|ure, rik—1:65) (8) they collaboi aie Lo create an overall more engag-\
N 1 ing conversation.

16 sty
Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024 | &@AS;
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Deploying FM:
Existing Strategies

b
* Ensemble of multiple FMs used to generate output -2 \
e e.g. LLM-Blender!Zl Blending!é!
g : - —
b
3

Synthesis

e Outputs used to synthesize final output
e Multiple model inference rounds

Limitations

* Increased latency and costs since at least two steps (generation and
synthesis) required

* Often require multiple FM inference rounds .

Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024 = &A
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Deploying FM:
Existing Strategies*

e Improve capability of a selected FM; model-

Mo d e | specific

0
- e Fine-tuning (e.g. DPOLI, SFT, RLHF4]) t%l II—'. *'%1
En ha ncement e Prompt engineering (e.g. Chain-of-Thought!2, ao o
Tree-of-Thoughts!®l)
e Ensemble of multiple FMs used to generate output .

. e e.g. LLM-Blender!, Blending!é!
Synthesis g

e Outputs used to synthesize final output
e Multiple model inference rounds

e Selects appropriate model based on the input
query or the generated output

e Predictive and non-predictive methods
® e.8. FrugalGPTE, RouteLLM29 Tabilll, Hybrid-LLM™22], ...

ouu mmm oy,

<
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Deploying FM:

Types of Routing/Layering*

v

+*

)
=
A

X

vt .
g Tl Tg T *

Non-predictive Routing Predictive Routing

. Based on collecting FM-generated . Based on the contents of the input

: request; no model inference
outputs from multiple FMs required.

Sequential collection of outputs o o
B continues until an answer passes a B Training prediction models (e.g.
quality threshold. classifiers) using a dataset of input

requests and associated human
model preference labels.

. Increased cost and latency due to . Performance is often limited by the

many rounds of inference. guality and generalizability of the
training dataset.

Capabilities are static in post-
deployment. 19

* As described in RouterBench 131 Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024 A ‘
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Deploying FM:

Types of Routing/Layering*

tv 1 o0k
» g — & g . g
Non-predictive Routing Predictive Routing

. Based on collecting FM-generated . Based on the contents of the input

: request; no model inference
outputs from multiple FMs required.

Sequential collection of outputs o o
B continues until an answer passes a B Training prediction models (e.g.

quality threshold. classifiers) using a dataset of input

requests and associated human
model preference labels.

. Increased cost and latency due to . Performance is often limited by the
many rounds of inference. guality and generalizability of the
training dataset.

Capabilities are static in post-
deployment. 20

* As described in RouterBench 131 Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024  &®A ‘
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Non-predictive Routing:

Tabi,,

wn 1leB Que I
= = = o : S Query _
App Model |'[inf. ctrl || | [Model store| | Tabi-aware %3_ W overheads | BERT-small 7
queries — . .| [ candidate offline £ 7| 71 wrong prediction
' > |selection|!| logic || : © | EEm BERT-small DistilBERT [
Wlth > L= metadata prOﬂllng E 2 { I DistilBERT 7 —l
targets Controller 4 Repository o | mm BERT-base L BERTbase
v © | mmm RoBERTa-base e M
____________ . g 11 mm RoBERTa-large K
Multi- ' —————| <€ [l AN AN, ......] ROBERTa-base [— =
Returnedle— [ Model-1 Model-2 o glinf' Model-n ED ]
DNN  [&——!| process process . " | process Z5 60 70 80 9095 L RoBERTa-large |—
results [* | ——— —— = engine_ Correct prediction (%) - .
Worker (a) Resource overheads of LLMs. (b) An imaginary MLFQ.

Figure 4. Tabi workflow. Highlighted components are op- Figure 1. Each color-filled bar’s right edge shows its accu-

.. : . . . racy. A bar’s width shows the accuracy improvement over
timized in this work. Components in dashed lines form the oo . Y mp :
the previous smaller DNNs, i.e., the percentage of queries

logical multi-level inf erence engine (§4). that can be correctly served by a model but not by the ones
on its left. The height shows the model size. The gray area
| Optl mized for discriminative models is the resource overheads compared to an ideal scenario.

21 :
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Non-predictive Routing:

FrugalGPT,

Key ldea:

» Collection of various
methods to optimize FM
Inference costs while
maintaining correct
responses

Prompt: Q1+A1,Q2+A2,Q3+A3,Q4+A4) | Prompt: Q2+A2,Q4+A4 |
Q: What ig the result of IV —y! _y/ Q: What s the result of Ny m NO,
and O, at high temperatures? and O at high temperatures?

(a) Prompt selection

Prompt: Q1+A1,Q2+A2,Q3+A3,Q4+A4) Prompt: Q1+Q2,A1+A2,Q3+Q4 A3+A4
Q: What is the result of Ny and O, \ Q1: What is the result of V5 NO
at high temperatures? —»and O at high temperatures? m g
t: Q1+A1,Q2+A2,Q3+A3,Q4+A4|
Fromp Q .Q Q - Q V( Q2: What helps prey hide? camouflage
Q: What helps prey hide?
(b) Query concatenation
: - Q" N3 and O at high temp leads to? Q=q
Q: What is the result of N > > — s NO,

and O at high temperatures? Cache A nitrogen oxides
(c) Completion cache
What helps prey hide? m camouflage
What is from echolocation? sonar

Q: What is the result of Ny ﬁ
. > » NO»
and O at high temperatures?

(d) Model fine-tuning

GPT-J GPT-3 GPT-4
Q: What helps prey hide? —> —— > camouflage
Ps prey camouflage ——————> camouflage -

accept answer

(e) LLM cascade

22
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Deploying FM:

Types of Routing

b
tv v tv » -
é é é .. -’.'0 é
‘ - G = G —p lgm —p -
o® ap X aDo X ao X a®
Non-predictive Routing Predictive Routing
. Based on collecting FM-generated . Based on the contents of the input
outputs from multiple FMs request; FM output not required
Sequential collection of outputs o o
B continues until an answer passes a B Training prediction models (e.g.

quality threshold. classifiers) using a dataset of input

requests and associated human

,\0& model preference labels.
'6.“@& . Increased cost and latency due to . Performance is often limited by the
W many rounds of inference. guality and generalizability of the

training dataset.

Capabilities are static in post-
deployment. 23
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Deploying FM:

Types of Routing
tv v v

-5 - B -5
o® ap X @D X apb X
Non-predictive Routing
. Based on collecting FM-generated
outputs from multiple FMs

Sequential collection of outputs
. continues until an answer passes a
quality threshold.

Increased cost and latency due to
many rounds of inference.

v

+*

)
=
Al

.-

Predictive Routing

. Based on the contents of the input
request; FM output not required

. Training prediction models (e.g.
classifiers) using a dataset of input
requests and associated human
model preference labels.

. Performance is often limited by the
guality and generalizability of the
training dataset.

Il Capabilities are static in post-
deployment.

Vasilevski et al., Balancing Cost and




Zooter: Routing to the Expert,,

Key ldea

e Reward model ——» Query Routing 0ff-the-shelf
ranking to obtain Tooter Trauning w T -
model expertise & — -

» Trains routing PSErIbUEe %ﬁl
function through 4 p espese 2 0.33
knowledge s "f

distillation

: Reward
. Zooter oy : Model

e Inference In 4

NI I : Response N -1.73
, training in |
LLM N
green
DiKsntofllleadtgieon Reward Tag-based Label
Training Distribution Enhancement

25 A5,
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Predictive Routing:

Hybrid-LLM,,

 Predictive router using DeBERT-style encoder

M
L] L] L] 1 ”
1 Deterministic router ()= =57 2 (0 log(pe(@) + (1= ) log(1 = pu()
o e . 1 N
1 Probabilistic router £(w) = 5 3 (0" og(pu (i) + (1 — ") log(1 — pu(z:))
i=1
—_ 5: llama-2 (13b) 5: llama-2 (13b)
: L: gpt-3.5-turbo oo L: gpt-3.5-turbo
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Figure 1: We use a dataset of natural language queries from a range of tasks like question answering,

summarization, information extraction, ete. (See Section 4 for details). We observe that (a) smaller models

generally give poorer response quality or lower BART score [Yuan et al., 2021], (b) Llama-2 (13b) outperforms

GPT-3.5-turbo on around 20% examples, and (¢) our router can make 22% fewer calls to GPT-3.5-turbo

(cost advantage) with 1% drop in response quality (BART score). 26
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Predictive Routing:

RouteLLM,,

Trained four predictive routers based on:

 Similarity-weighted ranking (Elo rating)

J Matrix-factorization model
( BERT-based classifier
1 Causal LLM classifier
1 Conversational preference data +
augmentation from benchmarks

MT Bench MT Bench

GPT-4 Tf===-gandom™"~~——~~"f~—========="3 i GPT-4 f---=====mmmmmmmmmmmmm e e
—=— SW Ranking

—=— Matrix Factorization
—— BERT

—— Causal LLM /’

Augmented

—— Random
~— SW Ranking (A)

—— Matrix Factorization (A)
—— BERT (A)
________________ —=— Causal LLM (A)

Mixtral T e o s s ans s se s aseaseanE S Mixtral

0 20 40 60 80 100 0 20 40 60 80 100

% Calls to GPT-4 % Calls to GPT-4

Before augmentation After augmentation

MMLU MMLU
GPT-4 + —— Random = ~—————mmmmmmmmmoom5 - GPT-4 f---===--=-=--—mmmmmmmom oo -
== SW Ranking
—— Matrix Factorization

—— BERT
—— Causal LLM

—— Random
—e— SW Ranking (A)

—— Matrix Factorization (A)
—— BERT (A)

Mixtral +—f========== == e e Mixtral +-#------========-- —— Causal LLM (A)
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% Calls to GPT-4 % Calls to GPT-4

Figure 4: 5-shot MMLU performance for all routers.
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——————————————————— 1 ePra e
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9% Calls to GPT-4 % Calls to GPT-4

Figure 5: 8-shot GSM8K performance for all routers. 27 l
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Predictive Routing:

Challenges & Limitations

Often based on training a classifier (e.g. ML model) using a preference dataset

— flan-t5 (800m)
=~ |lama-2 (13b)

. llama-2 (13b)
transformed w/ t=1.3

¥ Arena (battle) X Arena (side-by-side)

(O Direct Chat & Leaderboard  iAboutUs 34

Matrix Elo Ranking ~ Chatbot Arena L .
Leaderboard: Community-driven 4

Factorization (Brad Iey'Terry) Evaluation for Best LLM and Al .

chatbots BART scores (1)

(¢ )
Qsesiian: e e L ';'f.,mm'ym::?vm . G g etleie Figure 3: Response quality distribution for
e money supply will increase. e money suppl lecrease. e money suppl e
affected. (D) the discount rate would be affected. Output the answer only. FLAN-t5 (800m) and Llama-2 (13b) on the
Assistant A: Assistant B: 13 H H H
The Federal Reserve buys  (A) the money supply will increase. query How to ldentlfy the lndex Of me-
bonds 1 the seconday dian?” measured in BART scores. Llama-2

market to increase the

M a S ke d L M C a u S a I L M ::;:::’;mﬁm B—— 1 (13b) with transformation significantly over-

laps with FLAN-t5 (800m).

A: i B:
The Federal Reserve buys  When the Federal Reserve buys bonds in the secondary market, it can have .
bonds in the secondary  several effects on the economy that can inpact your daily life. Here are Source: Hybrid-LLM [12
market to increase the three examples:

money supply. This

affects your daily life 1. Interest rates: The Federal Reserve's actions in the bond market can
by: influence interest rates, which in turn can affect the cost of borrowing
1. Increasing the money  money. For example, if the Federal Reserve buys bonds and drives up demand A .
oy b oo i gl priasiont byt ik e by ot  Datasets: @ withmartian routerbench T
2. Increasing the money  cards may go up, making it more expensive to borrow money.

Supply and lowering the 2. Inflation: When the money supply increases, it can lead to inflation,
discount rate. which is the general rise in prices of goods and services. This can impact : .

3. Increasing the money  your daily life by making it more expensive to buy things like groceries, Q like 9 Follow @ Martian 15
supply and lowering the  gas, and other necessities.

o] . discount rate and 3. Employment: The Federal Reserve's actions in the bond market can also
increasing the money have an impact on employment. For example, if the Federal Reserve's : = - .
ro a I I S I C supply. actions lead to economic growth and increased demand for goods and Tasks: [» Text Generation 29  Question Answering
services, it can create more job opp and boost

Clustering _—

Assistant A provided an incorrect response to the user's question about how the Federal Reserve Languages: k) English Size:  10K<n<100K Tags; code
buying bonds in the secondary market affects daily life. The answer given is repetitive and lacks
clear examples of how the action impacts daily life.

On the other hand, Assistant B provided a relevant and accurate response to the user's question about -
the Federal Reserve buying bonds. The answer includes three clear examples of how the action impacts DOl:  doi:10.57967/hf/1996
daily life, such as interest rates, inflation, and employment.

Routing

Assistant A should isprove by providing relevant, clear, and accurate examples to address the user's
question. Assistant B's response is more helpful, relevant, and detailed.

Figure 1: Multi-turn dialogues between a user and two Al assistants—LLaMA-13B (Assistant A) # Dataset card | Files @ Community

(examples from RouteLLM’ Hybrid_LLM' RouterBench) and Vicuna-13B (Assi B)—initiated by a question from the MMLU benchmark and a follow-up

instruction. GPT-4 is then presented with the context to determine which assistant answers better.

Source: Zheng et. Al, 2023 [18] 28

Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024


https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2404.14618

Predictive Routing:

Challenges & Limitations

Often based on training a classifier (e.g. ML model) using a preference dataset

Leads to following related challenges:

Reliance on the :
Update process is

quality of

complicated
preference dataset P

L
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Reliance on the
GPT-4 T —— Random =

~=— SW Ranking

quality of e
preference dataset

Trained using mainly conversation o ETiE L
data (Chatbot Arena), routers
perform better on conversational
benchmark (MT Bench) compared
to multiple-choice questions

Traditional problems in ML (MMLU) o ople——— .}

6 Zb "/(?SIIS to ggT4 160
d Acquiring preference labels is difficult MMLU
3 Do preference labels accurately reflect each FM’s T s |
strengths/weaknesses? — EEQTIFLL;t
J How well does trained classifier generalize to
unseen types of input?
 e.g. multi-turn conversation vs. multiple-choice
guestions o
0 20 40 60 80 100

% Calls to GPT-4

Source: RoutelLM [10]
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Update process is

complicated

When deployed, routers and router
decisions remain static

Whenever a change is needed to the routing process,
updating the routing model is a resource-intensive

process
1 Training data needs to be updated
d Models need to be re-trained/adjusted
d Updated routers have to deployed to production
 e.g. part of a software update to a smartphone

Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024 ' &%AS

~ data

Build
model

Deploy
model

ML lifecycle process
repeats every time an
update is required
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Key Takeaways

dimportant to consider FM selection criteria and pick accordingly
e.g. type of deployment environment

dConsider FM from perspective of FMware (black box) and
optimize
e.g. combination of smaller LMs vs. one large LM

dMix and match different methods and see what works best
e.g. prompt engineering + ensembling + routing

Vasilevski et al., Balancing Cost and Quality in FMware, Toronto, Canada, 2024
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Abstract—To balance the quality and inference cost of a
Foundation Model (FM, such as large language models (LLMs))
powered software, people often opt to train a routing model
that routes requests to FMs with different sizes and capabilities.
Existing routing models rely on learning the optimal routing
decision from carefully curated data, require complex computa-
tions to be updated, and do not consider the potential evolution
of weaker FMs. In this paper, we propose Real-time Adaptive
Routing (RAR), an approach to continuously adapt FM routing
decisions while using guided in-context learning to enhance the
capabilities of weaker FM. The goal is to reduce reliance on
stronger, more expensive FMs. We evaluate our approach on
different subsets of the popular MMLU bench k. Over time,
our approach routes 50.2% fewer requests to computationally
expensive models while maintaining around 90.5% of the general
response quality. In addition, the guides generated from stronger
models have shown intra-domain generalization and led to a
better quality of responses compared to an equivalent approach
with a standalone weaker FM.

Index Terms—LLM routing, Foundation Models, Large Lan-
guage Models, continual learning, prompt engineering, model
layering, FMware.

I. INTRODUCTION

Due to recent advances in their capabilities, foundational
models (FMs) such as large language models (LLMs) have
been applied to a wide variety of use cases such as open-ended
conversations, planning, code generation, and question answer-
ing [34]. Developers of FM-powered software (i.e., FMware)
[11] often face a trade-off between maximizing language
model capabilities and minimizing the compute resources and
costs. Choosing a large FM that has hundreds of billions of
parameters will give them better capabilities (e.g. reasoning)

and_anali

that a small, weaker FM can handle, the small FM is utilized to
save computing costs. When the request is deemed beyond the
capability of the small FM, a large FM with stronger capability
is used as a fall-back option to guarantee the output quality.
Such a strategy can be seen on both cloud-based FMware (e.g.,
chatbots that use GPT-3.5 by default but fall back to GPT-4 for
difficult tasks) and edge-based FMware (e.g., Al assistants on
smartphones that use on-device small FM by default but fall
back to server-side large FM when needed). For edge-based
FMware, such a strategy has added benefits of low internet
dependencies, low latency, reduced computational cost due to
the use of edge hardware, and enhanced privacy as user data
never leaves the device.

The effectiveness of such a layered architecture depends on
the performance of the model routing method. A number of so-
lutions for model routing have been proposed in the literature.
These can be broadly categorized into using machine-learning-
based routers to predict model selection [8, 10, 13, 19, 23, 26],
ensembling calls to multiple FMs and selecting the best output
[13, 15], and cascading model inferences until an acceptable
response is returned [9]. However, many of the above methods
have their own set of limitations including redundant inference
and latency costs, reliance on training dataset generalization,
and complexity of adaption to new data.

In this paper, we propose Real-time Adapting Router
(RAR), a method that adapts to the evolution of FM capabili-
ties and improves model routing decisions over time, intending
to decrease overall computation costs while maintaining the
quality of responses. The proposed approach improves upon
static model-based routing methods (e.g. ones in RouteLLM

h nhancing the wea M _canah with continnal

A Stronger FM capability

Weaker FM capability

~
~ Use of stronger FM
—

—>

Time

« Our proposed approach of
intelligent routing

« Minimize costs while maintaining
response quality

« Decrease dependence on larger FM by
improving capabilities of smaller FM

 In some cases, reduced use of larger FM
by ~50% while maintaining ~90% of
response quality

« Combination of static predictive
routing + prompt-based continual
learning
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