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Automatic SE in the Era of LLM

Write tests for the following code:

LLMs
Code

Write a function to sort a list of elements

def compare_two_integers(a, b):
if a < b:

return f"{b} is bigger"
elif a > b:

return f"{a} is bigger"
else:

return f"{a} is equal to {b}"

Repair the following issue:

Patch

Test Cases

Prompts: NLP + Code (optional) Solutions

……..

……..

User



LLM-based Automatic SE + RAG 

User

LLMs

Prompts: NLP + Code (optional) Solutions

……..

Retriever

Similar 
code +test
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code 
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issue + patch
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Code

Patch

Test Cases



Our recent work on advancing LLM-based SE

Enhancing 
Prompts via RAG

Enhancing 
Prompts via clarifying 

and optimization

Fine-tuning small 
LLMs for SE tasks

Ensuring the 
reliability of 

benchmark data



ClarifyGPT: Empowering LLM-based Code Generation 
with Intention Clarification 

• Auto Code Generation 

➢ Converting user-provided natural language 
requirements to executable code

➢ Improving software development efficiency

https://survey.stackoverflow.co/2023/#ai

Write a function to sort a list of elements.

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

User NLP requirement
LLMs

Code Solution

Enhancing 
prompts

ClarifyGPT: A Framework for Enhancing LLM-Based Code Generation via Requirements Clarification

F Mu, L Shi, S Wang, Z Yu, B Zhang, CX Wang, S Liu, Q Wang

Proceedings of the ACM on Software Engineering 1 (FSE), 2332-2354



User NLP requirement
LLMs

Generated Code

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

Challenges for LLM-based Code Generation 

➢ Users often struggle to accurately express their requirements, leading to ambiguity 
in natural language descriptions 

➢ LLMs lack machinimas to clarify the requirements 

Write a function to sort a list of elements.



User NLP requirement
LLMs

Generated Code

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

ambiguity: asc or desc？

sorting desc

Challenges for LLM-based Code Generation 

➢ Users often struggle to accurately express their requirements, leading to ambiguity 
in natural language descriptions 

➢ LLMs lack machinimas to clarify the requirements 

Write a function to sort a list of elements.



User NLP requirement
LLMs

Generated Code
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Challenges for LLM-based Code Generation 

➢ Users often struggle to accurately express their requirements, leading to ambiguity 
in natural language descriptions 

➢ LLMs lack machinimas to clarify the requirements 

Write a function to sort a list of elements.



Generated Code

Observation: Ambiguous requirements often lead to semantic
inconsistent code among different solutions generated by LLMs.

User NLP requirement
LLMs

Generated Code

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

ambiguity: asc or desc？

sorting asc

Challenges for LLM-based Code Generation 

➢ Users often struggle to accurately express their requirements, leading to ambiguity 
in natural language descriptions 

➢ LLMs lack machinimas to clarify the requirements 

Write a function to sort a list of elements.



Solution: Human-in-the-loop Requirements Clarification 

Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], nums[i]

........
return nums

User

1 1

LLMs

Generated Code

sorting desc? asc?



Solution: Human-in-the-loop Requirements Clarification 

Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], nums[i]

........
return nums

User

Should the sorting be in ascending or 
descending order?

2

1 1

2

LLMs

Generated Code

sorting desc? asc?



Solution: Human-in-the-loop Requirements Clarification 

Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):
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return nums

User
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Ascending order
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Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], nums[i]

........
return nums

User

Should the sorting be in ascending or 
descending order?

Ascending order

2

1

3

1

2

3 LLMs

Generated Code

sorting asc

Goal: Empowering LLMs with the ability to identify and clarify ambiguous 
requirements would help LLMs generate accurate code.

Solution: Human-in-the-loop Requirements Clarification 



Empowering LLM-based Code Generation with Intention 
Clarification

Overview of ClarifyGPT



Empowering LLM-based Code Generation with Intention 
Clarification

• Challenge1: When to ask clarifying
questions？

➢ Test Input Generation: Generate
a large number of tests via
mutation based on the reqs

➢ Code Consistency Check: Run the
generated code on the test inputs.
If the test outputs are consistent,
we consider the requirements are
unambiguous

Overview of ClarifyGPT



Empowering LLM-based Code Generation with Intention 
Clarification

• Challenge1: When to ask clarifying
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➢ Test Input Generation: Generate
a large number of tests via
mutation based on the reqs
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• Challenge2: What questions？

➢ Reasoning-based Question 
Generation: Use LLMs to analyze 
the reasons for ambiguity and 
propose targeted questions based 
on the identified causes.

Overview of ClarifyGPT
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ClarifyGPT improves the performance of LLM-based code 
generation by around 15%

The Pass@1(%) of ClarifyGPT
• Participants:

➢ students, researchers, and developers
➢ >3 years of experience with Python

• Two baselines:
➢ Chain-of-thought
➢ GPT-Engineering

• Datasets:
➢ MBPP-sanitized/ET (427)
➢ HumanEval (164)

ClarifyGPT elevates the performance (Pass@1) of GPT-4 on MBPP-sanitized from 70.96% to 
80.8%; and elevates its performance on MBPP-ET from 51.52% to 60.19%. The relative 
improvement is 15.35% on average, outperforming the baselines.



ClarifyGPT with Simulated User Feedback



ClarifyGPT vs. GPT-Engineering 

➢ Pitfalls of GPT-Engineering:
➢ ask questions for every problem (on average 3 more than ClarifyGPT)
➢ ask unnecessary questions



EPiC: Search-based Prompt Optimization for LLM-based 
Code Generation 

Enhancing 
prompts

• Prompt Optimization 
➢ Utilize search algorithms to explore variations of 

prompts to identify those that yield the best responses

➢ Better alignment with LLMs’ training data, and stimulate 
better response with certain structures/words/phrases 

https://arxiv.org/pdf/2408.11198

EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation 

H Taherkhani, M Sepindband, HV Pham, S Wang, H Hemmati

https://arxiv.org/pdf/2408.11198


EPiC: Search-based Prompt Optimization for LLM-based 
Code Generation 

Enhancing 
prompts

➢ Utilize search algorithms to explore variations of 
prompts to identify those that yield the best responses

➢ Better alignment with LLMs’ training data, and stimulate 
better response with certain structures/words/phrases 

• Prompt Optimization 

Write a function to sort a list of elements upwardly.

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], 

nums[i]

User LLMs
Write a function to sort a list of elements ascendingly.

def bubble_sort(nums):
........
while i –gap  < len(nums)-1:

if nums[i-gap] < nums[i]:
nums[i], nums[i + gap] =nums[i + gap], 

nums[i]



1. Generate initial tests and solution 

2. Evaluate the generated code

3. Build initial population with LLM

4. Evaluate each prompt and calculate the fitness score

5. Select the candidate prompts for mutation

6. Mutate prompts and re-generating  solutions

• fitness function
➢ pass rate of tests

• mutation approaches
➢ LLM-based
➢ similar_words_replace 

• population
➢ N * 10

Overview of EPiC



EPiC outperforms SOTA in pass@1, $cost, and time

• Three baselines:
➢ Reflexion (verbal feedback +RL)
➢ LDB (feedback + COT)
➢ LATS (agent + search)

• Tow datasets:
➢ HumanEval
➢ MBPP

EPiC outperforms the SOTA baselines by %1 to %3 on HumanEval
and %2 to %7 on MBPP with costs that are either lower or
comparable to prior studies.



The Impact of Different Knowledge Base Sources on 
RAG-based Unit Test Generation

Enhancing 
prompts

➢ Allows LLMs access to the latest and more domain-specific 
information

➢ Helps ground the output in factual information, reducing the 
likelihood of hallucinations 

• Retrieval-Augmented Generation (RAG) 

https://arxiv.org/abs/2310.10508

Prompt Engineering or Fine Tuning: An Empirical Assessment of Large Language Models in Automated Software Engineering Tasks

J Shin, C Tang, T Mohati, M Nayebi, S Wang, H Hemmati



The Impact of Different Knowledge Base Sources on 
RAG-based Unit Test Generation 

Enhancing 
prompts

➢ Allows LLMs access to the latest and more domain-specific 
information

➢ Helps ground the output in factual information, reducing the 
likelihood of hallucinations 

• Retrieval-Augmented Generation (RAG) 

• External Sources for RAG-based test generation:

Code Repo Q&A Knowledge Documents

…..



Impact of different external resources of RAG-based test 
generation 



Impact of different external resources of RAG-based test 
generation 

• Four baselines:
➢ GPT-3.5-turbo
➢ GPT-4o
➢ Mistral 8x22B instruct
➢ Llama 3.1 405B instruct

• Five DL infrastructure libs:
➢ TensorFlow
➢ PyTorch
➢ Sk-learn
➢ Google Jax

➢ XGBoost
• Four metrics:

➢ Parse rate
➢ Execution rate
➢ Pass rate
➢ Code Coverage

• Two RAGs:
➢ Basic
➢ API



Win counts (based on code coverage) of the RAG approaches vs the zero-shots (ZS). Cmb
denotes combined RAG, API denotes API documents, GH denotes GitHub issues, and SO
denotes StackOverflow Q&As.

Performance of RAGs with different settings

1. RAG could improve the code coverage not the syntactical correctness of unit test cases.
2. API-level RAG generally performs better than Basic (project-level) RAG.
3. GitHub issues benefit RAG the most among the three examined sources.



Benefits of GitHub issues for RAGs: covering more corner cases

• Structured and Context-Rich 
Information:
➢ logs, stack traces, code snippets

• Detailed Problem Context:
➢ exact inputs used and the method 

calls that led to the problem

GitHub issues provide unique knowledge 



Domain Adaptation for Code Model-based Unit Test 
Case Generation

Fine-tuning 
LLMs

▪ Domain shift:
occurs when a machine learning model is 
trained on data from one domain but is later 
applied to data from a different domain, 
leading to a drop in performance. 

▪ Fine-tuning: 
Involves continuing training with 
datasets from a specific task and 
adjusting the model weights.

▪ Domain Adaptation 
Fine-grained fine-tuning with 
datasets from a specific domain or 
project.

Domain Adaptation for Code Model-Based Unit Test Case Generation

J Shin, S Hashtroudi, H Hemmati, S Wang

ISSTA 2024



Our Approach: Fine-tuning + Domain adaptation

1. Test Mapping
➢ Which lines are covered by which tests

2. Fine-tune on “task-level”
➢ Methods2Test data (780K)

3. DA on “project-level”
➢ Defects4J (20% code from projects)

4. Post-processing
➢ AST parsability check

➢ Remove existing tests

➢ Inject unit tests



• Two baselines:
➢ GPT-4
➢ A3Test (PLBart)

• Five metrics:
➢ Parse rate
➢ Execution rate
➢ BLEU/CodeBLEU
➢ Line Coverage
➢ Mutation Score

• Base model:
➢ CodeT5 (220M parameters)

CodeT5  with and without DA vs. GPT-4 and A3Test



• A Groundbreaking evaluation framework designed to assess the 
capabilities of LLMs in resolving GitHub Issues.

• Address the limitations of traditional benchmarks that are synthetic 
or simplified (they are complex and real).

• They include issues with test cases expecting the LLMs to pass 
them.

SWE-Bench+: Enhanced Coding Benchmark for 
LLMs 

Benchmark
Reliability 

arXiv preprint arXiv:2410.06992

SWE-Bench+: Enhanced Coding Benchmark for LLMs

R Aleithan, H Xue, MM Mohajer, E Nnorom, G Uddin, S Wang



Robustness Analysis of SWE-Bench

are the LLMs actually resolving the issues in the SWE-bench?

Overview of our manual analysis

• Model:
➢ SWE-Agent + GPT4

• Data:
➢ 2k raw issues (titles, tests, gold patches)
➢ 251 successfully fixed issues

➢ generated patches
➢ tests

• Patch Validation Study:
➢ each patch v.s gold patch
➢ review logs, issue descriptions, tests



64% of the solved issues are suspicious 



64% of the solved issues are suspicious 



LLMs’ performance on clean data drops by 90%
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From Prompt Enhancement to Fine-Tuning: 
Improving Automatic SE Tasks with LLMs

https://www.eecs.yorku.ca/~wangsong/
wangsong@yorku.ca

We are hiring (10 faculty positions): 
https://lassonde.yorku.ca/about/careers/faculty-recruitment


