Software Performance Engineering
for FMware (SPE4FMware)

Presented by: Boyuan Chen and Haoxiang Zhang

@ Centre for Software Excellence, Huawei, Canada

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024



How to cite this session?

@misc{Zhang2024AIwareTutorial,

author = {Haoxiang Zhang and Boyuan Chen and Ahmed E. Hassan},

title = {Software Performance Engineering for FMware (SPE4FMware) },
howpublished = {Tutorial presented at the AIware Leadership Bootcamp 2024},
month = {November},

year = {2024},

address = {Toronto, Canada}l,
note = {Part of the AlIware Leadership Bootcamp series.},
url = {https://aiwarebootcamp.io/slides/2024 aiwarebootcamp zhang software performance engineering for fmware.pdf}}

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 o)



Check this paper for more information about
this session

@darticle{zhang2024softwareperformanceengineeringfoundation,
title={Software Performance Engineering for Foundation Model-Powered Software (FMware)},

author={Haoxiang Zhang and Shi Chang and Arthur Leung and Kishanthan Thangarajah and Boyuan Chen and Hanan
Lutfiyya and Ahmed E. Hassan},

Jjournal={arXiv preprint arXiv:2411.09580},
year={2024},
url={https://arxiv.org/abs/2411.09580},

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024



OQOutlines

(Background of FM Serving and Techniques (Boyuan)

dChallenges and Innovation Paths in SPE for FMware (Haoxiang)

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 d



Decoding ‘

Quick recap on autoregressive
decodin

Tokenization ->$oken embedding + Positional encodings -> a series of
Decoder blocks -> sampling from logits

Token Embeddings (wte) Positional Encodings (wpe)
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‘ Attention

Three matrices in self-attention

* Query: The query is a representation of the current word used to
score against all the other words (using their keys). We only care
about the query of the token we’re currently processing.

* Key: Key vectors are like labels for all the words in the segment.
They’re what we match against in our search for relevant words.

* Value: Value vectors are actual word representations, once we’ve
scored how relevant each word is, these are the values we add up to
represent the current word.

QK"

Attention(Q, K, V') = softmax(
Vdy,

1%

— 0\,0
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Attention

Breakdown in shapes

T,C=1, 768 // C represents the embedding size

x.shape = (1,768) // this input combines token embedding and positional
embedding

head_size = 16 // tunable hyperparameter
g_weight.shape = (768,16) // fully connected layer, trainable parameters

k_weight.shape = (768,16) // fully connected layer, trainable parameters | |—
v_weight.shape = (768,16) // fully connected layer, trainable parameters

Attention

¢ Q=x@q_weight (shapeis 1,16) T I _;dg
« K =x@k_weight (shapeis 1,16) |Em§e;55ng| |E$%s;;g|
* V=x@v_weight (shapeis 1,16) A o

Attention score shape (1,16)
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No KV Cache
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No KV Cache
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KV Cache
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Decoding | Attention | PV cervice

KV Cache
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‘ Attention ’

KV Cache takes around 30% of VRAM

KV

Parameters Cacl;le
(26GB, 65%) | (>30%)

Others
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‘ Attention |

Compute Bound vs Memory Bound

* Computing power: FLOP/S e
* Bandwidth: Bytes/s [ .~
e Operational Intensity: | = /B

* Roofline model:

Operationa 1
i ® T ¥ ] Intensi ty
-1, when I <I,,: Memory Bound f Byvels Imax=F SN
P = ==y =
Intensity
T, when I > I,,, Compute Bound
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Attention

FlashAttention

Outer Loop .
Ki:dxN
Attention on GPT-2
Copy Block to SRAM
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* The key is to minimize the data movement using HBM

* Tiling and re-computation
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‘ FM service

Characteristics of FM Inference

Task Heterogeneity Non-deterministic Execution &
Resource Consumption

; Summarize

dOCS The Alware Leadership Bootcamp is an event scheduled f
rom November 3 to 8, 2024, at Queen's University Downt
own Toronto Campus. ...

; Generate . .
Code o Token generation length is not
known before the generation
> Refactor

e Lead to unknown GPU memory

cost due to KVcache
Performance requirements are also different

(e.g., Latency requirements are different)

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 \



‘ | FM service

How do you serve FM in production?

From traditional backend point of view Open Challenges

e Traditionally, you need a load e [Scheduling] How to design
balancer good load balancing

e Then you need to decide the # of techniques?
replicas and how to dispatch j|> e [Scheduling] How to deal
model inference to the engines with request priorities with

e Scheduling techniques matter SLA constraints?
depending on SLAs e [Resource] How to avoid

memory waste?
e [Resource] Scaling strategies?

=\0.0)
Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024  g¥ASs



‘ ’ FM service

vLLM: PagedAttention to manage
memory efficiently

Motivation: kvcache memory are first assigned and the GPU memory is
locked (internal/external fragmentation)

2 slots for 3 slots future used External
generated tokens (reserved) fragmentation
A A A
. 4 \ )
Artificial In;e‘f;g s the | future of teglg:;ol <eo§> <resv> ... <resv> . LLM is
g Y ) Y
3 KV cach'e slots for Request A 2040 slots never u;ed Request B
request A's prompt current step (internal fragmentation)
e Internal fragmentation: over-allocated due to the unknown output length.
e Reservation: not used at the current step, but used in the future
e [External fragmentation: due to different sequence lengths.
oo e
. 2 ;
https://arxiv.org/pdf/2309.06180.pdf )=
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| | FM service
Virtual Blocks for storing KV Cache

Physical KV blocks

Req:est block 0
o mathem
block 1 |computer|scientist| and ticlan
Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned” block 2
block 3
Logical KV blocks Block table oc B A . ? 3
: ; Physical ocated on deman
block 0| Alan Turing is a block number | * Filled rt_alg;k <4 N——
o imathema 7 4 |
block 1 | computer | scientist | and Helant s 1 ” flock 5 |
block 2 5 1 bl;:k_s ===
block 3 block 7| Alan Turing is a
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’ FM service

|
Serving multiple requests, where the
memory is allocated on demand

Physical KV blocks

Block Table Block Table
Request tant mathem Request
computer | scientist| and aticlan

Logical KV blocks Artificial '"t:":ige is the Logical KV blocks
Alan Turing is a Artificial |Intelligence is the
— [mathema|
computer | scientist | and Gin future of

H
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|
With the same input prompts, KV

FM service

Cache memory can be saved

E.g.) Parallel sampling

The future of cloud
computing is

Prompt

LLM

( bright and poised for further
growth and transformation.

| Here's why: ... )

(intertwined with the i
advancement of artificial

__intelligence (Al). ... v

likely to be characterized by
several key trends: ...

Multiple outputs

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 A



FM service

Speculative Decoding

* Observation: difficulty of predicting each token not equal

e “The city of New " s
 “This meansthat _ ”

* |dea: use small model on easier tokens
* 7B model is faster than 70B: ~9ms vs “90ms on a single GPU
* But how to know which tokens are easier?
* Rejection sampling

https://a rxiv.org/pdf/2302.013 18pdf Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 | éui@
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‘ ’ FM service

Compare draft model and target model

o meta-llama Llama-2-7b-chat-hf

M,, = draft model
Mq — target model ® meta-llama Llama-2-70b-chat-hf

pf = prefix, K = 5 tokens

p1(x) = My,(pf)
pz(x) = Mp(pf,xl) ——— X2

X1

Run draft model
for K steps

pS(x) = Mp(pf' X1, X2, X3, x4-) E——— X5

pl(x) = Mp(pf) e —— X1
pa(x) = Mp(pf,xl) ) X2

q1 (x), qz (x)' as (x)' o (x)' qs (x), qe (x)

ps(x) = My, (pf, X1, X2, X3, X, ) e— X5

Tl N O O O

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

Run target model once

= Mq (Pf. X1,X2,X3, Xy, x5)

Goal: Sample a token from g(x)

Case 1: If g(x) = p(x), then accept

Case 2: If g(x) < p(x), then accept with p

Tr(C)
probability ) ﬂ/

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 a8




FM service

Continuous batching

* Motivation: static batching wastes GPU resources as sequence length
is different

_.--,-l"‘_,.--"...-"'_...-..-""_.ﬂ_..-

I l';\ 13 l'r.f (A ‘15 I o .'5
gt [g| S

Completing four sequences using static batching. On the first iteration (left), each sequence generates one token (blue) from
the prompt tokens (yellow). After several iterations (right), the completed sequences each have different sizes because each
emits their end-of-sequence-token (red) at different iterations. Even though sequence 3 finished after two iterations, static
batching means that the GPU will be underutilized until the last sequence in the batch finishes generation (in this example,
sequence 2 after six iterations).

https://a rXiV-Org/pdf/2309-O6 180pdf Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024
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FM service

Iteration level scheduling

— — — - — — ——F — —
T, T,

1-1.. 3 lq lg 16 2 | l 5

1 |

Completing seven sequences using continuous batching. Left shows the batch after a single iteration, right shows the batch
after several iterations. Once a sequence emits an end-of-sequence token, we insert a new sequence in its place (i.e.

sequences S5, Sé, and S7). This achieves higher GPU utilization since the GPU does not wait for all sequences to complete
before starting a new one.

ofof A
EH(55)2

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 ’ \



‘ FM service

Model Swap (Model Multiplex)

* Motivation: serve many models KServe ModelMesh Serving Architecture @

at the Same time to provide How model-mesh works in KServe: o~
customized experiences. Not all \ _— /B kkkkkkk
the models can be served at the model-mesh ﬁ//\\\ 3 By |
same time L x\f e TR TN
* Representative systems: 00 o 20 / @§ V
+ IBM — ModelMesh B

oooooooooooo

* Alibaba — FaaSwap

* The key idea is to keep models
hot to avoid long loading time

https://a rXiV-Org/a b5/230603622 Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 . \ @
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OQOutlines

(dBackground of FM Serving and Techniques (Boyuan)

(JChallenges and Innovation Paths in SPE for FMware (Haoxiang)
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Examples of Cognitive Architecture

/Use 1 FM, ask it to \
extract the name,

email, and address
from an article

* Qutput is expected to
contain these 3 pieces
of info

input

/Cognitive architecture #1: asking FM once for all

TR,
EHos):
Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024



Examples of Cognitive Architecture

/ The same task as the
last example, but use 3
FMs
* The task is t_)mken into /Cognitive architecture #2: asking parallel N
3 subtasks, i.e., subquestions
extracting name, input_1 | FM output_1 '.
email, and address — /[ — -
. input | input_2 FM output_2 j output
» Eventually 3 pieces of |
1 input_3 output_3
info are aggregated | meut3 | | CHEES y
\

. /

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 S



Examples of Cognitive Architecture
4 The same task by

using 3 FMs
* The task is planned
from easy .tO hard /Cognitive architecture #3: ask questions N
subtasks, I.e., sequentially
extracting name, TPl FM > outeut?
email, and address —— ) —— |
. input | input_2 FM output_2 ! output
. _Eventually 3 pieces of —— —
info are aggregated nPut | output? |
\ )

. /

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 = g%A



Examples of Cognitive Architecture

/ The same task, solvem

by agents

« Two agents can
iIndependently solve
the same problem

* Athird agent as a

judge to decide the
final result

* The process can be

looped and eventually
stopped

@ognitive architecture #4: solving the problem by\

agents agentic_loop

Agent 1

input Agent_Judge output

o /

TR,
EHos):
Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024



Different Cognitive Architectures

input

\Y

I

output

/Cognitive architecture #1: asking FM once for all

@ognitive architecture #3: ask questions I
sequentially
input_1 FM output_1
input i input_2 FM output_2 l output
input_3 FM output_3 ||

/Cognitive architecture #2: asking parallel N
subquestions
input : input_2 output_2 1 output
En £

/Cognitive architecture #4: solving the problem by\
agents

agentic_loop
N §

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 @



Different Cognitive Architectures

/Cognitive architecture #1: asking FM once for all /Cognitive architecture #2: asking parallel N
subquestions
l input_1 output_1 I
 Complexity
]
Cost - jen

- * Predictability /

@ognitive architecture #3: ask qu cture #4: solving the problem by\
sequentially

input_1

7

agents agentic_loop
| FM | e Agent_1
input i input_2 output_2 ! output input I Agent_Judge output

\ AN

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024



Service Level Agreements

* An SLA (service level agreement) is a part of a standardized
service contract in which specific aspects of a service are
defined by a service provider.

 “Get your pizza in 20 minutes or less, or it's free.”

Most accurate & &
fastest address
verification

Our SLA here at Smarty essentially guarantees three things:

« Sub-500 millisecond response times on requests we receive (internet latency not included)

= Atleast 99.98% uptime in any given month

Smarty is simply the best solution for USPS and Internat ional y . y Z
Address Validation. From our APIs, to our list-processing tools, 2 , ~— ~— ‘ « We promise to credit your account with free service if we ever fail to fulfill either promise.
we have an address validation solution for you. 7 A

X
t b
| >
(Talk to an Address Expert) // > a

https://www.smartv.com/a rticles/sla Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 4- ;



https://www.smarty.com/articles/sla

Service Level Agreements

* Online services expect small latency and high availability.
» Service Level Agreements cover many performance metrics.

Azure OpenAl SLA

What is the service-level agreement (SLA) for Azure OpenAl Service?

We guarantee that Azure OpenAl Service will be available at least 99.9 percent of the time.

See SLA details >

Maximum Available Minutes — Downtime
x 100

Maximum Available Minutes

Service Credit:

Uptime Percentage Service Credit

<99.9%

10%

<99%

25%

Latency Calculation and Service Levels for Azure OpenAl Provisioned Throughput Managed Deployments

https://azure.microsoft.com/en-us/products/ai-services/openai-service

Availability

Response Time

Load Time

Data Backup

Data Restored

Maintenance Window

Scalability

Help Desk Availability

Many aspects of SLA

The service will be available 99.95% of the

time.

The service will respond to requests

within 1 second.

Screens will load within 3 seconds.

Data will be backed up daily.

Data will be restored within 1 hour of an

authorized restore request.

Maintenance downtime will be restricted
to Sunday mornings from 02:00 to 04:00.

The service will be scaled up to 100

machines upon demand.

Help desk will be available by phone, email

and chat on a 24 /7 basis.

png et al., Alware Leadership

First Contact
Resolution

Incident Response
Time

Resolution Time

Tran: sparency

Throughput

Performance

Quality

User Satisfaction

nto, Canada, 2024

80% of help desk requests will be resolved

within the first interaction with the user.

A response to incidents will be initiated

within 15 minutes of notification.

Level one incidents will be resolved within

3 hours.

An incident report will be shared with

customer within 24 hours.

The service will handle loads of up to 1000

transactions a second.

North American network latency will not

exceed 10 milliseconds.

The defect rate will be less than 1 percent.

will be 80% or higher.



https://simplicable.com/IT/service-level-agreement
https://simplicable.com/IT/service-level-agreement
https://azure.microsoft.com/en-us/products/ai-services/openai-service

Challenges in SPE4FMware

Challenge #1: Complexity of creating high-performance Challenge #3: Complexity of performance tuning and optimization
cognitive architectures of FMware

» Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

» Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

« The addition of semantic caching throughout the cognitive
architecture

Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware
communication language between the Al components of FMware

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 |



Picking more powerful FMs within a simple cognitive architecture
versus simpler FMs within a more complex cognitive architecture

Simple cognitive architecture, with 1 FM that is powerful enough Complex cognitive architecture with multiple but simpler FMs,
to handle multiple aspects (retrieving name, email, address), but  lower cost per inference request, but more requests.

high cost per execution.

/Cognitive architecture #1: asking FM once for all /Cognitive architecture #2: asking parallel I
subquestions
input_1 | output_1 l
input output input : input_2 output_2 5 output
input_3 | output_3 |
\ I\ /
« Some FMs are 10x more expensive pere FMware quality: smaller FMs in
request. complex architectures can match or

- First token generation significantly exceed performance of larger FMs.

more expensive.  FMware latency: more complex
architectures may result in higher end-

to-end latency.

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 S @




Pipelining the execution of cognitive code as it is being generated
versus waiting for the full generation and verification of such code

- Agent_Planner Agent_Verifier Agent_Executor -

 FMware generates “source code” on  * Pipeline the execution while the plan is

@een: plan e2e > verify > execute \
blue: plan per step > execute > rollback

the fly. still being generated, offers better
« Substantial delay in waiting for the b ggﬁévi?%?gﬁ’fghg l;lr?ll((jﬁv g(})/_mplex

complete “source code”, then verifying
correctness before executing the plan.

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 \ 5



The addition of semantic caching throughout the cognitive
architecture
« Semantic caching identify
similar requests or previously
produced content, minimizing O CAEHIG FACHING
FM calls, reducing redundant .
 /

Each Multi-Step Subsequent Requests
Request Is Processed Recelve a Copy of
One-by-One

processing, thus lowering
FMware latency.

* How to: efficient storage and
quick retrieval of cached
results, effective memory w
management, data retrieval
speed optimization.

. the Result

|




Innovation Path in SPE4FMware

Challenge #1: Complexity of creating high-performance Challenge #3: Complexity of performance tuning and optimization
cognitive architectures of FMware

» Design complex cognitive architectures, not only focusing on
accuracy, but also tuning the FMware performance

» Develop techniques to help architects balance complex
cognitive architectures with performance considerations (e.qg.,
latency, cost)

« Systematically assist architects to reason about FMware
design choices about pipelining and rollbacks

Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware
communication language between the Al components of FMware

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 |



Challenges in SPE4FMware

Challenge #1: Complexity of creating high-performance cognitive Challenge #3: Complexity of performance tuning and optimization
architectures of FMware

» Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

» Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

« The addition of semantic caching throughout the cognitive
architecture

Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware
communication language between the Al components of
FMware

* Deciding the communication language
+ Defining the communication format
» Correcting communication messages

» Optimizing communication messages

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 |



Communication

4 Natural language vs
function calls:

 more verbose
* more complex

e more variable

Communication:

/Cognitive architecture #1: asking FM once for all

* require input/output tokens
k » lead to compute overhead
(Q* K"T) * V comp .ation process with caching
sm‘ Keys _Tr  _ose

Prefill

Ji
' |

X

|

l Restoring Restoring
from cache K from cache V
Step N Keys_Transpose
4 Values

4]

L") Queries Results

A | — s

o

S — X X R

(=]

2]
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Deciding the communication language

* More tokens > longer
processing time

« Language choices affect Al
components in FMware
meeting performance
requirements

 In API-hosted models, higher
costs & longer response times
with more tokens

* In self-hosted models, although
language-specific fine-tuning
may help, it can cost substantial
compute

Different languages have efficiency and density
variations, causing word-to-token ratio varies across
languages (English: 7, Hindi: 14, Emoiji: 4)

Hi, welcome to the bootcamp :l'FR@f, @E’ﬁﬂ H 3MUdl WRd 3

Clear Show examile

Tokens Chara

24 67

Hi, welcome to the bootcamp =%, EIE\E?E"H ¥ Ul WA & 0000

=\0.0)
Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024  g¥ASs



Defining the communication format

JSON Adding schema degrades the exact
* FMs fine-tuned, more reliably match in the GSM8K dataset
* more tokens than necessary Model Test JSON XML YAML

gemini-1.5-flash 89.33 89.66 89.26 89.21
(08) (03) (03) (0.4
- 89.21 8820 87.42
(15 @2 @37

claude-3-haiku 86.51 86.99 86.96 82.89
d computing”, (0.8) 0.2) (0.6) (5.7)
’ + schema constraint - 2344  79.76 80.63

(22.9)  (7.0) (2.8)

gpt-3.5-turbo 7599 7470 60.45  71.58
G (L) (72) (3.0
- 4925 4506  73.85
(12.0)  (19.9)  (5.6)

LLaMA-3-8B 7513 64.67 65.07 69.41
0.9) (2.23) (0.56) (0.95)
- 4890 5674  46.08

+ schema constraint

+ schema constraint

+ schema constraint

YAM L - (6.7) (8.3) (16.8)
» less reliable output format
» fewer tokens Cost for different models and output formats

over 6 dataset

: 401597

: John Model text json xml yaml

: Cloud computing

: Engineer LLaMA-3—8b 011 009 009 008
: Development Gemini-1.5-Flash 020 0.21 0.21  0.19
Claude-3-Haiku 0.20 030 030 0.29
GPT-3.5-Turbo 035 023 024 023

Let Me Speak Freely? A Study on the Impact of Format Restrictions on Performance of Large Language Models,
Tam et al., https://arxiv.org/abs/2408.02442 Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024




Correcting communication messages

@ognitive architecture #3: ask questions N

sequentially

input_1

input_2 output_2

output_3 |
- /
* Incorrectly structured » Correct communication, e.g.,
language/format may cause defining communication rules,

downstream FMware components to including examples

fail or misunderstand input » Increasing token count, leading to
higher latency and resource
consumption

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 A



Optimizing communication messages

format rule:
<NAME=%“xxx">

question:
What 1s the name of the Nobel prize
winner for peace 1n 20237

generation:
<NAME="“Narges Mohammadi”>

* Inefficient token generation in « Difficult to dynamically identify

predictable or structurally such structures, while

consistent communication accurately extracting and

messages generating only the variable
components

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 4- ;



are Leadership Bootcamp, Toronto, Canada, 2024



Innovation Path in SPE4FMware

Challenge #1: Complexity of creating high-performance cognitive Challenge #3: Complexity of performance tuning and optimization
architectures of FMware

» Design complex cognitive architectures, not only focusing on
accuracy, but also tuning the FMware performance

+ Develop techniques to help architects balance complex
cognitive architectures with performance considerations (e.qg.,
latency, cost)

» Systematically assist architects to reason about FMware
design choices about pipelining and rollbacks

Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware
communication language between the Al components of
FMware

« Address token count disparities across languages, e.g.,
assigning more powerful accelerators to LRLs, prompt
compression, fine-tuning

* Reduce invalid outputs across different communication
schemas

» Offload communication correction to CPU for reducing cost

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 ]



Challenges in SPE4FMware

Challenge #1: Complexity of creating high-performance cognitive Challenge #3: Complexity of performance tuning and
architectures optimization of FMware

» Picking more powerful FMs within a simple cognitive » Complex model-level optimization
architecture versus simpler FMs within a more complex

cognitive architecture « Excessive amount of performance configuration knobs

« Pipelining the execution of cognitive code as it is being * Evolving and moving target

generated versus waiting for the full generation and verification
of such code

« The addition of semantic caching throughout the cognitive
architecture

Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware
communication language between the Al components of FMware

* Deciding the communication language
* Defining the communication format
» Correcting communication messages

» Optimizing communication messages

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 ]



Complex model-level optimization

Various model-level performance optimization techniques:
e.g., multi-query attention, knowledge distillation, quantization
focusing on various performance considerations:
hardware utilization, latency, throughput, or cost
More details are be referred from this survey, and actually there are 10+ surveys
like so about FM inference performance optimization

)-[EWElghlx)nly—Quam: GPTQ [246], AWQ [247], LLM-QAT [248], etc. ]
=

Co-Quant: ZeroQuant [249], SmoothQuant [250], etc. ] qu e S t i O I‘l :
Pruning HLLM-Pruner [251], SparseGPT [252], Wanda [253], etc. J
r{__ Model Compression (§5.1.1) 1_[Ewr.‘.m,m; BabyLlama [254], MiniLLM [255]. eic. ] Wh a t t OO l S d O y OoOu use t h a t h ave

K ige D
Black-box: Hsieh et al. [256], SCoTD [257], etc. J 0 0

Low-rank Factorization }—(ZeroQuanl—VZ [258], LoSparse [259], etc. } S Ome t h l n g t O do w l t h a n y O f t h e S e
Quantization: ZeroQuant [249], SmoothQuant [250], etc. '

o comn ﬁ ) things?
Pruning: Li et al. [260], Jiang et al. [261], Chevalier et al. [262],
Anagnostidis et al. [263], Zhang et al. [264], Ge et al. [265], etr.}

Inference Acceleration (§5.1.2)

Kernel Optimization HFlzshAuemion 266, 267], FlashDecoding++ [268], etc. ]

Efficient
Inference (§5.1)

Speculative Decoding HChen et al. [269], Leviathan et al. [270] , etc. ]

KV Quantization }_(ZeraQuam [249], SmoothQuant [250], etc. ]
{ Memory Reduction (§5.1.3) KV Pruning HAnagnosh‘dis et al. [263], Zhang et al. [264], etc. ]
Offloading }—(FlexGen [271]. PowerlInfer [272], Alizadeh et al. [273], etc. ]

Softy App! ]—(Same above ]

Hardware Approaches ]—(NPU [274], TPU [275), FPGA [276], ete. ]

{ Energy Optimization (§5.1.4) J-E

« Lack of techniques and tools directly  Complex prompt decomposition increases
Impacting FMware developers, who interact FM calls

with models through prompting - Explainability add output token count
overhead

« Chained FM calls sequential waiting
dependencies
Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security,
Li et al., https://arxiv.org/abs/2401.05459 Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024




Excessive amount of performance configuration knobs

* Multiple dimensions of * Model selection: trade-offs
configuration space for among quality metrics,
FMware performance generation speed, memory
optimization: usage, and SLA compliance

* cognitive architectures, prompt .« |nference engine selection
design, model selection,

quantization, fine-tuning, « System level configuration:

communication protocols, etc.  resource orchestration across

model loading/unloading, multi-
team environments,

heterogeneous workloads, etc.

=50 )"
Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 E~-



Evolving and moving target

 FMware has live evolution * Reproducible issue due to
nature, e.qg., a single agent token sampling in inference,
execution can lead to system- also due to dynamic data
wide adjustments, agent has flywheel or self-exploration.

seli-evolving capabilities. - Although lower temperature or
seed configuration can be
applied for reproducibility,
sacrifice autonomous
exploration capability.

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 Eﬁ-- A Y--J



Innovation Path in SPE4FMware

Challenge #1: Complexity of creating high-performance cognitive Challenge #3: Complexity of performance tuning and

architectures optimization of FMware

» Picking more powerful FMs within a simple cognitive « Systematic performance optimization for FMware, e.g., multi-objective,
architecture versus simpler FMs within a more complex search-based
cognitive architecture « Comprehensive benchmarking, evaluation of configuration efficiency

» Pipelining the execution of cognitive code as it is being « Develop best practices and anti-patterns

generated versus waiting for the full generation and verification

of such code Automated performance tuning to reduce manual effort, e.g., simulation

for configuration testing

* The addition of semantic caching throughout the cognitive Decide on the optimal frequency of model updates, fine-tuning with new

architecture datasets vs improving prompting/post-processing techniques, e.g., using
cost-benefit analysis

Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware
communication language between the Al components of FMware

* Deciding the communication language

* Defining the communication format

» Correcting communication messages

» Optimizing communication messages

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024



McDonald's Speedy Service System

/you are gonna love how we did it ...
brings me out to this tennis court ...
drawn this line the exact dimenions of
our kitchen ... Sink on the right, extruder
on the left ... Multimixer, soft drinks ...
bring out our whole staff and we have
'‘em go through the motions ... making
pretend burgers and fries ... keep the
tray level ... with a stick marking where
all the equipment should be ... do it over
and over, hashing it out,
choreographing it like some crazy
burger ballet ... No! NO! Everybody
stop! ... See all this open space here
now? ... This is the timing if the Lazy
Susan ... | still think there's a 3rd version
... | want to move everything ... after
about 6 hours of this, we get it just right
... It's a symphony of efficiency, not a
wasted motion ... custom build the
kitchen to our exact specs ... The
speedy system is born. The world's first

ever system to deliver food fast. It is
\\ totally revolutionary /

https://WWW.voutube.com/watch?v=jTageuhPfA|\/| Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 A9



https://www.youtube.com/watch?v=jTageuhPfAM

Runtime: environment or infrastructure that supports the
execution of a program while it is running

/you are gonna love how we did it ...
brings me out to this tennis court ...
drawn this line the exact dimenions of
our kitchen ... Sink on the right, extruder
on the left ... Multimixer, soft drinks ...
bring out our whole staff and we have
'‘em go through the motions ... making
pretend burgers and fries ... keep the
tray level ... with a stick marking where
all the equipment should be ... do it over
and over, hashing it out,
choreographing it like some crazy
burger ballet ... No! NO! Everybody
stop! ... See all this open space here
now? ... This is the timing if the Lazy
Susan ... | still think there's a 3rd version
... | want to move everything ... after
about 6 hours of this, we get it just right
... It's a symphony of efficiency, not a
wasted motion ... custom build the
kitchen to our exact specs ... The
speedy system is born. The world's first

love

customer feedback

tennis court

testing cluster

exact dimensions

hardware specs

right/left

resource provisioning

multimixer, soft drinks

runtime system components

bring whole staff .. go through motions .. pretent e2e testing
keep the tray level .. marking .. should be performance benchmarking
over and over .. hashing .. choreographing .. crazy load testing

everybody stop

failure

open space

resource utilization

timing

latency

3rd version

runtime evolution

moving everything refactoring
6 hours .. just right debugging
symphony of efficiency orchestration

not wasted motion

resource utilization

custom build

on-premise

our exact specs

performance requirements

speedy .. fast

latency

ever system to deliver food fast. It is
\\ totally revolutionary /

revolutionary

runtime innovation

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024




Challenges in SPE4FMware

Challenge #1: Complexity of creating high-performance cognitive Challenge #3: Complexity of performance tuning and optimization
architectures of FMware

» Picking more powerful FMs within a simple cognitive » Complex model-level optimization
architecture versus simpler FMs within a more complex
cognitive architecture

Excessive amount of performance configuration knobs
- Pipelining the execution of cognitive code as it is being * Evolving and moving target
generated versus waiting for the full generation and verification

of such code

« The addition of semantic caching throughout the cognitive
architecture

Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware

communication language between the Al components of FMware
guag P » Selecting optimal deployment options when hosting FMware

* Deciding the communication language
¢ guag » Deploying multi-process FMware efficiently

» Defining the communication format
ning vnicat » Deploying multi-tenant FMware efficiently

» Correcting communication messages

» Optimizing communication messages

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 ]



Selecting optimal deployment options when hosting FMware

* High computation cost of * On-premise complexity:
running FMs with accelerators require substantial engineering

» API limitation: performance effort to optimize hardware
unpredictability and usage and ensure muiti-

unreliability, while simple to set ténancy, while providing
up maximum control

- Cloud inefficiency: potentially * Diverse deployment options
low hardware utilization, with pros and cons

unnecessary costs if not « Complexity of a balanced act,
managed effectively, while to carefully weigh control, cost,
offering flexibility and performance, and hardware

scalability utilization

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 E



Deploying multi-process FMware efficiently

» Multiple concurrent processes,
share compute and bandwidth
resources, on a unified cluster:
inference, fine-tuning, agent
autonomous planning and
execution.

» Current "Model-as-a-Service"
paradigm insufficient for multi-
process FMware runtime
architecture

« Complexity of scheduling: due to

cross-process interference,
subprocess interference (prefill vs
decode), as processes are inertial,
costly to preempt or revert the state
(e.g., model weight loading, data
loading).

Complexity of memory
management: variable
prompt/output lengths affect
available memory, dynamic KV
cache memory, makln? memory
allocation unpredictable.

Complexit?f| of agent: autonomous
agent on the fly, lacking dynamic

resource allocation, also resource
contention between these agents.

=\0,0)
Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024 E»--



Deploying multi-tenant FMware efficiently

* High hardware costs force « Complexity to balance
multi-tenant deploymentasa  competing SLAs by tenants.
shared cluster. « Complexity to maximize

cluster-wide hardware
utilization, while meeting
performance goals of many
tenants’ numerous FMware
deployment.

* Optimize and balance
latency/throughput for cross-
FMware model sharing to
avoid loading costs.

. B E
Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024  g¥ASs



Innovation Path in SPE4FMware

Challenge #1: Complexity of creating high-performance cognitive Challenge #3: Complexity of performance tuning and optimization

architectures of FMware

» Picking more powerful FMs within a simple cognitive « Systematic performance optimization for FMware, e.g., multi-objective,
architecture versus simpler FMs within a more complex search-based
cognitive architecture « Comprehensive benchmarking, evaluation of configuration efficiency

» Pipelining the execution of cognitive code as it is being « Develop best practices and anti-patterns

generated versus waiting for the full generation and verification
of such code ’

« The addition of semantic caching throughout the cognitive
architecture

Challenge #2: Complexity of creating token-efficient
communication language between the Al components of FMware

* Deciding the communication language
* Defining the communication format .
» Correcting communication messages

» Optimizing communication messages .

Automated performance tuning to reduce manual effort, e.g., simulation
for configuration testing

Decide on the optimal frequency of model updates, fine-tuning with new
datasets vs improving prompting/post-processing techniques, e.g., using
cost-benefit analysis

Challenge #4: Complexity of deploying FMware

Hybrid hosting approaches for FMware, leveraging the
benefits of different deployment options

Integrate SLA-aware scheduling and scaling for optimized
performance or cost efficiency, to align with application level
performance targets

Determine optimal granularity for inter-process separation
(training vs inference), and intra-process separation
(prefill/decode)

From siloed approaches, to FMware-level, multi-tenant, and
cluster optimizatioget al., Alware Leadership Bootcamp, Toronto, Canada, 2024




Our vision: SLA-aware FMware Runtime

FMware Runtime is a runtime system in
production. It significantly reduces SLA

FMware Runtime: a simplified violations, and saves costs.
architecture and components « currently writing a paper with more
details and show our evaluation results
>{ Resouree |  continuously extending FMware
| Runtime, as an effort to tackle other
‘;qkﬂt R‘g“t Profiler 1 Cluster aforementioned challenges
Decompase ¥ « the benefit of this system is mentioned in
/ / > et L Data Flywheel, in a way that we
prototype, observe, improve efficiency,

iterate, all in a centrally designed
runtime system

* Goal: SLAs as a first citizen in runtime design, guarantee SLA of each FMware + #4: Request Router. Decide to route requests into model replicas. It is crucial to

while optimizing cluster-level hardware utilization. route so to decide which FM replica should serve a request, based on how
) N _ likely it can avoid SLA at risk. Resource Provisioner and Request Router work
* DAG (node: task, e.g., FM inference, traditional code execution, external API together to monitor SLA compliance, to make joint decisions together.

call, edge: control flow dependency, e.g., sequential or conditional branching). _ _ _
#5: Cluster. Handle the execution of actions that are fired from Resource
* #1. DAG decomposition. Provisioner and Request Router. Cross-node communication and data
movement (e.g., loading model weights) are also managed.
+ #2. Profiler. Estimate performance measures (e.g., latency, memory) for
individual nodes; done once only.

* #3: Resource Provisioner. Decide to allocate/release hardware resources, by a
risk-aware SLA violation algorithm.

Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024



Different Cognitive Architectures

/Cognitive architecture #1: asking FM once for all

“ ‘

o

Complexity
Cost .
Predictability -

Cognitive architecture #2: asking parallel
subquestions uestlon

et d - oot 2
l E
I o

éognitive architecture #3: ask qu

sequentially

cture #4: solving the problem by\

agents agentic_loo
S
=N

input_1
input input_2 \—outpuLz I output |
e outpet s

. v
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Innovation Path in SPE4FMware
Challenge #1: Complexity of creating high-performance Challenge #3: Complexity of performance tuning and
cognitive architectures optimization of FMware
« Picking more powerful FMs within a simple cognitive + Systematic performance optimization for FMware, e.g., multi-objective,
architecture versus simpler FMs within a more complex search-based
cognltlve architecture + Comprehensive benchmarking, evaluation of configuration efficiency
« Pipelining the execution of cognitive code as it is being - Develop best practices and anti-patterns
generated versus waiting for the full generation and verlflcatlon i i .
of such code Automated performance tuning to reduce manual effort, e.g., simulation
for configuration testing
+ The .addltlon of semantic caching throughout the cognitive Decide on the optimal frequency of model updates, fine-tuning with new
architecture datasets vs improving prompting/post-processing techniques, e.g., using
cost-benefit analysis
Challenge #2: Complexity of creating token-efficient Challenge #4: Complexity of deploying FMware
communication language between the Al components of . ! .
FMware Hybrid hosting approaches for FMware, leveraging the
R benefits of different deployment options
+ Deciding the communication language
9 guag + Integrate SLA-aware scheduling and scaling for optimized
+ Defining the communication format performance or cost efficiency, to align with application level
" — performance targets
« Correcting communication messages
o L + Determine optimal granularity for inter-process separation
+ Optimizing communication messages (training vs inference), and intra-process separation
(prefill/decode)
« From siloed approaches, to FMware-level, multi-tenant, and 64

cluster optimization

Challenges in SPE4FMware

Challenge #3: Complexity of performance tuning and
optimization of FMware

Challenge #1: Complexity of creating high-performance
cognitive architectures

+ Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

» Pipelining the execution of cognitive code as it is being

generated versus waiting for the full generation and verification

of such code

+ The addition of semantic caching throughout the cognitive
architecture

Challenge #2: Complexity of creating token-efficient
communication language between the Al components of

FMware

+ Deciding the communication language
» Defining the communication format

+ Correcting communication messages

+ Optimizing communication messages

Complex model-level optimization
Excessive amount of performance configuration knobs
Evolving and moving target

Challenge #4: Complexity of deploying FMware

Selecting optimal deployment options when hosting EMware

Deploying multi-process FMware efficiently

Deploying multi-tenant EMware efficiently

63

Our vision: SLA-aware FMware Runtime

FMware Runtime: a simplified
architecture and components

Rufu.\rce

Provisioner
Workflow Model Profiler 1 Cluster
Requests Requests

Decompose
Request
Router

Goal: SLAs as a first citizen in runtime design, guarantee SLA of each FMware

while optimizing cluster-level hardware utilization.

DAG (node: task, e.g., FM inference, traditional code execution, external API
call, edge: control fiow dependency, e.g., sequential or conditional branching).

#1. DAG decomposition.

#2. Profiler. Estimate performance measures (e.g., latency, memory) for
individual nodes; done once only.

#3: Resource Provisioner. Decide to allocate/release hardware resources, by a
risk-aware SLA violation algorithm.

FMware Runtime is a runtime system in
production. It significantly reduces SLA
violations, and saves costs.

« currently writing a paper with more
details and show our evaluation results
continuously extending FMware
Runtime, as an effort to tackle other
aforementioned challenges

the benefit of this system is mentioned in
Data Flywheel, in a way that we
prototype, observe, improve efficiency,
iterate, all in a centrally designed
runtime system

#4: Request Router. Decide to route requests into model replicas. It is crucial to
route so to decide which FM replica should serve a request, based on how

likely it can avoid SLA at risk. Resource Provisioner and Request Router work
together to monitor SLA compliance, to make joint decisions together.

#5: Cluster. Handle the execution of actions that are fired from Resource
Provisioner and Request Router. Cross-node communication and data
movement (e.g., loading model weights) are also managed.




Different Cognitive Architectures Challenges in SPE4FMware

/Coghnitive architecture #1: asking FM once for all Cognitive architecture #2: asking parallel Challenge #1: Complexity of creating high-performance Challenge #3: Complexity of performance tuning and
Ub UEStIOH cognitive architectures optimization of FMware
+ Picking more powerful FMs within a simple cognitive + Complex model-level optimization
'"F’“‘ i gt il architecture versus simpler FMs within a more complex ) )
i i + Excessive amount of performance configuration knobs

cognitive architecture

“ . - ; m | output » Pipelining the execution of cognitive code as it is being + Evolving and moving target
[ ] c I t generated versus waiting for the full generation and verification
omp ex' y of such code
[ @ + The addition of semantic caching throughout the cognitive

‘ OSt‘ aps hitect
- * Predictability /
https://arxiv.org/abs/2411.09580

éognitive architecture #3: ask qu cture #4: solving the problem by\
sequentiall

Challenge #2: Complexity of creating toke
communication language between the Al c

Software Performance Engineering for
- |[Foundation Model-Powered Software (FMware)| -

Innovation Path in SPE4FMware Our vision: SLA-aware FMware Runtime

Haoxiang Zhang | Shi Chang ' A ki - io i oid Ahmed E. Hassan

uti
#1. DAG decomposition. eque: outer. s-node communication and data
movement (€. g Ioadlng model WE|ghls) are also managed.

« Correcting communication messages
+ Determine optimal granularity for inter-process separation - #2. Profiler. Estimate performance measures (e.g., latency, memory) for

+ Optimizing communication messages (training vs inference), and intra-process separation individual nodes; done once only.
(preﬂll/decode) - #3: Resource Provisioner. Decide to allocate/release hardware resources, by a
risk-aware SLA violation algorithm.

« From siloed approaches, to FMware-level, multi-tenant, and 64 H
cluster optimization Zhang et al., Alware Leadership Bootcamp, Toronto, Canada, 2024
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