
Software Performance Engineering
for FMware (SPE4FMware)

Presented by: Boyuan Chen and Haoxiang Zhang
@ Centre for Software Excellence, Huawei, Canada

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

How to cite this session?

@misc{Zhang2024AIwareTutorial,

author = {Haoxiang Zhang and Boyuan Chen and Ahmed E. Hassan},

title = {Software Performance Engineering for FMware (SPE4FMware)},

howpublished = {Tutorial presented at the AIware Leadership Bootcamp 2024},

month = {November},

year = {2024},

address = {Toronto, Canada},

note = {Part of the AIware Leadership Bootcamp series.},

url = {https://aiwarebootcamp.io/slides/2024_aiwarebootcamp_zhang_software_performance_engineering_for_fmware.pdf}}

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

@article{zhang2024softwareperformanceengineeringfoundation,

title={Software Performance Engineering for Foundation Model-Powered Software (FMware)},

author={Haoxiang Zhang and Shi Chang and Arthur Leung and Kishanthan Thangarajah and Boyuan Chen and Hanan
Lutfiyya and Ahmed E. Hassan},

journal={arXiv preprint arXiv:2411.09580},

year={2024},

url={https://arxiv.org/abs/2411.09580},

}

Check this paper for more information about
this session

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Background of FM Serving and Techniques (Boyuan)
Challenges and Innovation Paths in SPE for FMware (Haoxiang)

Outlines

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Quick recap on autoregressive
decoding
Tokenization -> Token embedding + Positional encodings -> a series of
Decoder blocks -> sampling from logits

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Three matrices in self-attention
• Query: The query is a representation of the current word used to

score against all the other words (using their keys). We only care
about the query of the token we’re currently processing.

• Key: Key vectors are like labels for all the words in the segment.
They’re what we match against in our search for relevant words.

• Value: Value vectors are actual word representations, once we’ve
scored how relevant each word is, these are the values we add up to
represent the current word.

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Breakdown in shapes
• T, C = 1, 768 // C represents the embedding size
• x.shape = (1,768) // this input combines token embedding and positional

embedding
• head_size = 16 // tunable hyperparameter
• q_weight.shape = (768,16) // fully connected layer, trainable parameters
• k_weight.shape = (768,16) // fully connected layer, trainable parameters
• v_weight.shape = (768,16) // fully connected layer, trainable parameters
• Q = x@q_weight (shape is 1,16)
• K = x@k_weight (shape is 1,16)
• V = x@v_weight (shape is 1,16)
• Attention score shape (1,16)

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

No KV Cache
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

No KV Cache
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

KV Cache
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

KV Cache
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

KV Cache takes around 30% of VRAM
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Compute Bound vs Memory Bound
• Computing power: FLOP/S
• Bandwidth: Bytes/s
• Operational Intensity: I = π/β

• Roofline model:

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

FlashAttention

• The key is to minimize the data movement using HBM
• Tiling and re-computation

https://arxiv.org/abs/2205.14135

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

https://arxiv.org/abs/2205.14135

Task Heterogeneity

Summarize
docs

Generate
Code

Refactor

Performance requirements are also different
(e.g., Latency requirements are different)

● Token generation length is not
known before the generation

● Lead to unknown GPU memory
cost due to KVcache

Non-deterministic Execution &
Resource Consumption

Decoding Attention FM service

Characteristics of FM Inference

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

● Traditionally, you need a load
balancer

● Then you need to decide the # of
replicas and how to dispatch
model inference to the engines

● Scheduling techniques matter
depending on SLAs

● [Scheduling] How to design
good load balancing
techniques?

● [Scheduling] How to deal
with request priorities with
SLA constraints?

● [Resource] How to avoid
memory waste?

● [Resource] Scaling strategies?

From traditional backend point of view Open Challenges

Decoding Attention FM service

How do you serve FM in production?

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Motivation: kvcache memory are first assigned and the GPU memory is
locked (internal/external fragmentation)

https://arxiv.org/pdf/2309.06180.pdf

Decoding Attention FM service

vLLM: PagedAttention to manage
memory efficiently

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

https://arxiv.org/pdf/2309.06180.pdf

Virtual Blocks for storing KV Cache
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Serving multiple requests, where the
memory is allocated on demand

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

With the same input prompts, KV
Cache memory can be saved

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Speculative Decoding
• Observation: difficulty of predicting each token not equal

• “The city of New _ _ _” vs
• “This means that _ _ _”

• Idea: use small model on easier tokens
• 7B model is faster than 70B: ~9ms vs ~90ms on a single GPU
• But how to know which tokens are easier?
• Rejection sampling

https://arxiv.org/pdf/2302.01318.pdf

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

https://arxiv.org/pdf/2302.01318.pdf

Compare draft model and target model
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Continuous batching
• Motivation: static batching wastes GPU resources as sequence length

is different

https://arxiv.org/pdf/2309.06180.pdf

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

https://arxiv.org/pdf/2309.06180.pdf

Iteration level scheduling
Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Model Swap (Model Multiplex)
• Motivation: serve many models

at the same time to provide
customized experiences. Not all
the models can be served at the
same time

• Representative systems:
• IBM – ModelMesh
• Alibaba – FaaSwap

• The key idea is to keep models
hot to avoid long loading time

https://arxiv.org/abs/2306.03622

Decoding Attention FM service

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

https://arxiv.org/abs/2306.03622

Background of FM Serving and Techniques (Boyuan)
Challenges and Innovation Paths in SPE for FMware (Haoxiang)

Outlines

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

27

• Use 1 FM, ask it to
extract the name,
email, and address
from an article

• Output is expected to
contain these 3 pieces
of info

Examples of Cognitive Architecture

FM

Cognitive architecture #1: asking FM once for all

input output

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

28

Examples of Cognitive Architecture

FM

FM

FM

input

Cognitive architecture #2: asking parallel
subquestions

input_2

input_1

input_3

output_2

output_1

output_3

output

• The same task as the
last example, but use 3
FMs

• The task is broken into
3 subtasks, i.e.,
extracting name,
email, and address

• Eventually 3 pieces of
info are aggregated

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

29

Examples of Cognitive Architecture

Cognitive architecture #3: ask questions
sequentially

FM

FM

FM

input input_2

input_1

input_3

output_2

output_1

output_3

output

• The same task by
using 3 FMs

• The task is planned
from easy to hard
subtasks, i.e.,
extracting name,
email, and address

• Eventually 3 pieces of
info are aggregated

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

30

Examples of Cognitive Architecture

Cognitive architecture #4: solving the problem by
agents

input output

agentic_loop

Agent_Judge

Agent_1

Agent_2

• The same task, solved
by agents

• Two agents can
independently solve
the same problem

• A third agent as a
judge to decide the
final result

• The process can be
looped and eventually
stopped

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

31

Different Cognitive Architectures

Cognitive architecture #3: ask questions
sequentially

Cognitive architecture #4: solving the problem by
agents

FM

FM

FM

input

Cognitive architecture #2: asking parallel
subquestions

input_2

input_1

input_3

output_2

output_1

output_3

output

FM

FM

FM

input input_2

input_1

input_3

output_2

output_1

output_3

output input output

FM

Cognitive architecture #1: asking FM once for all

input output

agentic_loop

Agent_Judge

Agent_1

Agent_2

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

32

Different Cognitive Architectures

Cognitive architecture #3: ask questions
sequentially

Cognitive architecture #4: solving the problem by
agents

FM

FM

FM

input

Cognitive architecture #2: asking parallel
subquestions

input_2

input_1

input_3

output_2

output_1

output_3

output

FM

FM

FM

input input_2

input_1

input_3

output_2

output_1

output_3

output input output

FM

Cognitive architecture #1: asking FM once for all

input output

agentic_loop

Agent_Judge

Agent_1

Agent_2

• Complexity
• Cost
• Predictability

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Service Level Agreements
• An SLA (service level agreement) is a part of a standardized

service contract in which specific aspects of a service are
defined by a service provider.

• “Get your pizza in 20 minutes or less, or it's free.”

33
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024https://www.smarty.com/articles/sla

https://www.smarty.com/articles/sla

Service Level Agreements
• Online services expect small latency and high availability.
• Service Level Agreements cover many performance metrics.

34

Azure OpenAI SLA

Many aspects of SLA

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024https://azure.microsoft.com/en-us/products/ai-services/openai-service

https://simplicable.com/IT/service-level-agreement
https://simplicable.com/IT/service-level-agreement
https://azure.microsoft.com/en-us/products/ai-services/openai-service

Challenges in SPE4FMware

35

Challenge #4: Complexity of deploying FMware

Challenge #3: Complexity of performance tuning and optimization
of FMware

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of FMware

Challenge #1: Complexity of creating high-performance
cognitive architectures

• Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

• Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

• The addition of semantic caching throughout the cognitive
architecture

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Picking more powerful FMs within a simple cognitive architecture
versus simpler FMs within a more complex cognitive architecture

• Some FMs are 10x more expensive per
request.

• First token generation significantly
more expensive.

• FMware quality: smaller FMs in
complex architectures can match or
exceed performance of larger FMs.

• FMware latency: more complex
architectures may result in higher end-
to-end latency. 36

Simple cognitive architecture, with 1 FM that is powerful enough
to handle multiple aspects (retrieving name, email, address), but
high cost per execution.

FM

Cognitive architecture #1: asking FM once for all

input output

Complex cognitive architecture with multiple but simpler FMs,
lower cost per inference request, but more requests.

FM

FM

FM

input

Cognitive architecture #2: asking parallel
subquestions

input_2

input_1

input_3

output_2

output_1

output_3

output

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

input output

DAG DAG DAG DAG DAG

DAG

Pipelining the execution of cognitive code as it is being generated
versus waiting for the full generation and verification of such code

• FMware generates “source code” on
the fly.

• Substantial delay in waiting for the
complete “source code”, then verifying
correctness before executing the plan.

• Pipeline the execution while the plan is
still being generated, offers better
responsiveness, but risks complex
rollbacks if plan fails midway.

37

green: plan e2e > verify > execute
blue: plan per step > execute > rollback

Agent_ExecutorAgent_Planner Agent_Verifier
n1

n2

n4

n3

n1 n1 n1

n2

n1

n2

n1

n2

n4

DAG
n1

n2

n4

n3
n1 n2 n4 O

n1

n2

n4

DAG
n1

O

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

The addition of semantic caching throughout the cognitive
architecture
• Semantic caching identify

similar requests or previously
produced content, minimizing
FM calls, reducing redundant
processing, thus lowering
FMware latency.

• How to: efficient storage and
quick retrieval of cached
results, effective memory
management, data retrieval
speed optimization.

38
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Innovation Path in SPE4FMware

39

Challenge #4: Complexity of deploying FMware

Challenge #3: Complexity of performance tuning and optimization
of FMware

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of FMware

Challenge #1: Complexity of creating high-performance
cognitive architectures

• Design complex cognitive architectures, not only focusing on
accuracy, but also tuning the FMware performance

• Develop techniques to help architects balance complex
cognitive architectures with performance considerations (e.g.,
latency, cost)

• Systematically assist architects to reason about FMware
design choices about pipelining and rollbacks

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Challenges in SPE4FMware

40

Challenge #4: Complexity of deploying FMware

Challenge #3: Complexity of performance tuning and optimization
of FMware

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of
FMware

• Deciding the communication language

• Defining the communication format

• Correcting communication messages

• Optimizing communication messages

Challenge #1: Complexity of creating high-performance cognitive
architectures

• Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

• Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

• The addition of semantic caching throughout the cognitive
architecture

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

FM

Cognitive architecture #1: asking FM once for all

input output

41

Communication

Communication:
• require input/output tokens
• lead to compute overhead

• Natural language vs
function calls:

• more verbose
• more complex
• more variable

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Deciding the communication language
• More tokens > longer

processing time
• Language choices affect AI

components in FMware
meeting performance
requirements

• In API-hosted models, higher
costs & longer response times
with more tokens

• In self-hosted models, although
language-specific fine-tuning
may help, it can cost substantial
compute

42

Different languages have efficiency and density
variations, causing word-to-token ratio varies across
languages (English: 7, Hindi: 14, Emoji: 4)

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Defining the communication format

43

JSON
• FMs fine-tuned, more reliably
• more tokens than necessary

YAML
• less reliable output format
• fewer tokens

Adding schema degrades the exact
match in the GSM8K dataset

Cost for different models and output formats
over 6 dataset

Let Me Speak Freely? A Study on the Impact of Format Restrictions on Performance of Large Language Models,
Tam et al., https://arxiv.org/abs/2408.02442 Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Correcting communication messages

• Incorrectly structured
language/format may cause
downstream FMware components to
fail or misunderstand input

• Correct communication, e.g.,
defining communication rules,
including examples

• Increasing token count, leading to
higher latency and resource
consumption

44

Cognitive architecture #3: ask questions
sequentially

FM

FM

FM

input input_2

input_1

input_3

output_2

output_1

output_3

output

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Optimizing communication messages

45

format rule:
<NAME=“xxx”>

question:
What is the name of the Nobel prize
winner for peace in 2023?

generation:
<NAME=“Narges Mohammadi”>

• Inefficient token generation in
predictable or structurally
consistent communication
messages

• Difficult to dynamically identify
such structures, while
accurately extracting and
generating only the variable
components

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Innovation path for
Challenge #2: Complexity of creating token-efficient communication language
between the AI components of FMware
• Address token count

disparities across languages,
e.g., assigning more powerful
accelerators to LRLs, prompt
compression, fine-tuning

• Reduce invalid outputs across
different communication
schemas

• Offload communication
correction to CPU for reducing
cost

46

Expressiveness vs
EfficiencyZhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Innovation Path in SPE4FMware

47

Challenge #4: Complexity of deploying FMware

Challenge #3: Complexity of performance tuning and optimization
of FMware

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of
FMware

• Address token count disparities across languages, e.g.,
assigning more powerful accelerators to LRLs, prompt
compression, fine-tuning

• Reduce invalid outputs across different communication
schemas

• Offload communication correction to CPU for reducing cost

Challenge #1: Complexity of creating high-performance cognitive
architectures

• Design complex cognitive architectures, not only focusing on
accuracy, but also tuning the FMware performance

• Develop techniques to help architects balance complex
cognitive architectures with performance considerations (e.g.,
latency, cost)

• Systematically assist architects to reason about FMware
design choices about pipelining and rollbacks

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Challenges in SPE4FMware

48

Challenge #4: Complexity of deploying FMware

Challenge #3: Complexity of performance tuning and
optimization of FMware

• Complex model-level optimization

• Excessive amount of performance configuration knobs

• Evolving and moving target

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of FMware

• Deciding the communication language

• Defining the communication format

• Correcting communication messages

• Optimizing communication messages

Challenge #1: Complexity of creating high-performance cognitive
architectures

• Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

• Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

• The addition of semantic caching throughout the cognitive
architecture

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Complex model-level optimization

49Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security,
Li et al., https://arxiv.org/abs/2401.05459

Various model-level performance optimization techniques:
• e.g., multi-query attention, knowledge distillation, quantization
focusing on various performance considerations:
• hardware utilization, latency, throughput, or cost
More details are be referred from this survey, and actually there are 10+ surveys
like so about FM inference performance optimization

• Lack of techniques and tools directly
impacting FMware developers, who interact
with models through prompting

• Complex prompt decomposition increases
FM calls

• Explainability add output token count
overhead

• Chained FM calls sequential waiting
dependencies

question:
what tools do you use that have
something to do with any of these
things?

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Excessive amount of performance configuration knobs
• Multiple dimensions of

configuration space for
FMware performance
optimization:

• cognitive architectures, prompt
design, model selection,
quantization, fine-tuning,
communication protocols, etc.

• Model selection: trade-offs
among quality metrics,
generation speed, memory
usage, and SLA compliance

• Inference engine selection
• System level configuration:

• resource orchestration across
model loading/unloading, multi-
team environments,
heterogeneous workloads, etc.

50
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Evolving and moving target
• FMware has live evolution

nature, e.g., a single agent
execution can lead to system-
wide adjustments, agent has
self-evolving capabilities.

• Reproducible issue due to
token sampling in inference,
also due to dynamic data
flywheel or self-exploration.

• Although lower temperature or
seed configuration can be
applied for reproducibility,
sacrifice autonomous
exploration capability.

51
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Innovation Path in SPE4FMware

52

Challenge #4: Complexity of deploying FMware

Challenge #3: Complexity of performance tuning and
optimization of FMware
• Systematic performance optimization for FMware, e.g., multi-objective,

search-based

• Comprehensive benchmarking, evaluation of configuration efficiency

• Develop best practices and anti-patterns

• Automated performance tuning to reduce manual effort, e.g., simulation
for configuration testing

• Decide on the optimal frequency of model updates, fine-tuning with new
datasets vs improving prompting/post-processing techniques, e.g., using
cost-benefit analysis

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of FMware

• Deciding the communication language

• Defining the communication format

• Correcting communication messages

• Optimizing communication messages

Challenge #1: Complexity of creating high-performance cognitive
architectures

• Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

• Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

• The addition of semantic caching throughout the cognitive
architecture

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

McDonald's Speedy Service System

53

you are gonna love how we did it ...
brings me out to this tennis court ...

drawn this line the exact dimenions of
our kitchen ... Sink on the right, extruder
on the left … Multimixer, soft drinks ...
bring out our whole staff and we have
'em go through the motions ... making
pretend burgers and fries … keep the

tray level … with a stick marking where
all the equipment should be … do it over

and over, hashing it out,
choreographing it like some crazy
burger ballet … No! NO! Everybody

stop! … See all this open space here
now? … This is the timing if the Lazy

Susan ... I still think there's a 3rd version
… I want to move everything … after

about 6 hours of this, we get it just right
… It's a symphony of efficiency, not a

wasted motion … custom build the
kitchen to our exact specs … The

speedy system is born. The world's first
ever system to deliver food fast. It is

totally revolutionary
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024https://www.youtube.com/watch?v=jTageuhPfAM

https://www.youtube.com/watch?v=jTageuhPfAM

Runtime: environment or infrastructure that supports the
execution of a program while it is running

54

love customer feedback

tennis court testing cluster

exact dimensions hardware specs

right/left resource provisioning

multimixer, soft drinks runtime system components

bring whole staff … go through motions … pretent e2e testing

keep the tray level … marking … should be performance benchmarking

over and over … hashing … choreographing … crazy load testing

everybody stop failure

open space resource utilization

timing latency

3rd version runtime evolution

moving everything refactoring

6 hours … just right debugging

symphony of efficiency orchestration

not wasted motion resource utilization

custom build on-premise

our exact specs performance requirements

speedy … fast latency

revolutionary runtime innovation

you are gonna love how we did it ...
brings me out to this tennis court ...

drawn this line the exact dimenions of
our kitchen ... Sink on the right, extruder
on the left … Multimixer, soft drinks ...
bring out our whole staff and we have
'em go through the motions ... making
pretend burgers and fries … keep the

tray level … with a stick marking where
all the equipment should be … do it over

and over, hashing it out,
choreographing it like some crazy
burger ballet … No! NO! Everybody

stop! … See all this open space here
now? … This is the timing if the Lazy

Susan ... I still think there's a 3rd version
… I want to move everything … after

about 6 hours of this, we get it just right
… It's a symphony of efficiency, not a

wasted motion … custom build the
kitchen to our exact specs … The

speedy system is born. The world's first
ever system to deliver food fast. It is

totally revolutionary
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Challenges in SPE4FMware

55

Challenge #4: Complexity of deploying FMware

• Selecting optimal deployment options when hosting FMware

• Deploying multi-process FMware efficiently

• Deploying multi-tenant FMware efficiently

Challenge #3: Complexity of performance tuning and optimization
of FMware

• Complex model-level optimization

• Excessive amount of performance configuration knobs

• Evolving and moving target

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of FMware

• Deciding the communication language

• Defining the communication format

• Correcting communication messages

• Optimizing communication messages

Challenge #1: Complexity of creating high-performance cognitive
architectures

• Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

• Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

• The addition of semantic caching throughout the cognitive
architecture

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Selecting optimal deployment options when hosting FMware
• High computation cost of

running FMs with accelerators
• API limitation: performance

unpredictability and
unreliability, while simple to set
up

• Cloud inefficiency: potentially
low hardware utilization,
unnecessary costs if not
managed effectively, while
offering flexibility and
scalability

• On-premise complexity:
require substantial engineering
effort to optimize hardware
usage and ensure muiti-
tenancy, while providing
maximum control

• Diverse deployment options
with pros and cons

• Complexity of a balanced act,
to carefully weigh control, cost,
performance, and hardware
utilization

56
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Deploying multi-process FMware efficiently
• Multiple concurrent processes,

share compute and bandwidth
resources, on a unified cluster:
inference, fine-tuning, agent
autonomous planning and
execution.

• Current "Model-as-a-Service"
paradigm insufficient for multi-
process FMware runtime
architecture

• Complexity of scheduling: due to
cross-process interference,
subprocess interference (prefill vs
decode), as processes are inertial,
costly to preempt or revert the state
(e.g., model weight loading, data
loading).

• Complexity of memory
management: variable
prompt/output lengths affect
available memory, dynamic KV
cache memory, making memory
allocation unpredictable.

• Complexity of agent: autonomous
agent on the fly, lacking dynamic
resource allocation, also resource
contention between these agents.

57
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Deploying multi-tenant FMware efficiently
• High hardware costs force

multi-tenant deployment as a
shared cluster.

• Complexity to balance
competing SLAs by tenants.

• Complexity to maximize
cluster-wide hardware
utilization, while meeting
performance goals of many
tenants’ numerous FMware
deployment.

• Optimize and balance
latency/throughput for cross-
FMware model sharing to
avoid loading costs.

58
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Innovation Path in SPE4FMware

59

Challenge #4: Complexity of deploying FMware

• Hybrid hosting approaches for FMware, leveraging the
benefits of different deployment options

• Integrate SLA-aware scheduling and scaling for optimized
performance or cost efficiency, to align with application level
performance targets

• Determine optimal granularity for inter-process separation
(training vs inference), and intra-process separation
(prefill/decode)

• From siloed approaches, to FMware-level, multi-tenant, and
cluster optimization

Challenge #3: Complexity of performance tuning and optimization
of FMware
• Systematic performance optimization for FMware, e.g., multi-objective,

search-based

• Comprehensive benchmarking, evaluation of configuration efficiency

• Develop best practices and anti-patterns

• Automated performance tuning to reduce manual effort, e.g., simulation
for configuration testing

• Decide on the optimal frequency of model updates, fine-tuning with new
datasets vs improving prompting/post-processing techniques, e.g., using
cost-benefit analysis

Challenge #2: Complexity of creating token-efficient
communication language between the AI components of FMware

• Deciding the communication language

• Defining the communication format

• Correcting communication messages

• Optimizing communication messages

Challenge #1: Complexity of creating high-performance cognitive
architectures

• Picking more powerful FMs within a simple cognitive
architecture versus simpler FMs within a more complex
cognitive architecture

• Pipelining the execution of cognitive code as it is being
generated versus waiting for the full generation and verification
of such code

• The addition of semantic caching throughout the cognitive
architecture

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Our vision: SLA-aware FMware Runtime
FMware Runtime: a simplified
architecture and components

• Goal: SLAs as a first citizen in runtime design, guarantee SLA of each FMware
while optimizing cluster-level hardware utilization.

• DAG (node: task, e.g., FM inference, traditional code execution, external API
call, edge: control flow dependency, e.g., sequential or conditional branching).

• #1. DAG decomposition.

• #2. Profiler. Estimate performance measures (e.g., latency, memory) for
individual nodes; done once only.

• #3: Resource Provisioner. Decide to allocate/release hardware resources, by a
risk-aware SLA violation algorithm.

• #4: Request Router. Decide to route requests into model replicas. It is crucial to
route so to decide which FM replica should serve a request, based on how
likely it can avoid SLA at risk. Resource Provisioner and Request Router work
together to monitor SLA compliance, to make joint decisions together.

• #5: Cluster. Handle the execution of actions that are fired from Resource
Provisioner and Request Router. Cross-node communication and data
movement (e.g., loading model weights) are also managed.

FMware Runtime is a runtime system in
production. It significantly reduces SLA
violations, and saves costs.
• currently writing a paper with more

details and show our evaluation results
• continuously extending FMware

Runtime, as an effort to tackle other
aforementioned challenges

• the benefit of this system is mentioned in
Data Flywheel, in a way that we
prototype, observe, improve efficiency,
iterate, all in a centrally designed
runtime system

60
Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

Haoxiang Zhang Shi Chang Arthur Leung Kishanthan Thangarajah Boyuan Chen Hanan Lutfiyya Ahmed E. Hassan

Zhang et al., AIware Leadership Bootcamp, Toronto, Canada, 2024

https://arxiv.org/abs/2411.09580

https://arxiv.org/abs/2411.09580

	Software Performance Engineering for FMware (SPE4FMware)
	Slide Number 2
	Slide Number 3
	Outlines
	Quick recap on autoregressive decoding
	Three matrices in self-attention
	Breakdown in shapes
	No KV Cache
	No KV Cache
	KV Cache
	KV Cache
	KV Cache takes around 30% of VRAM
	Compute Bound vs Memory Bound
	FlashAttention
	Characteristics of FM Inference
	Slide Number 16
	Slide Number 17
	Virtual Blocks for storing KV Cache
	Serving multiple requests, where the memory is allocated on demand
	With the same input prompts, KV Cache memory can be saved
	Speculative Decoding
	Compare draft model and target model
	Continuous batching
	Iteration level scheduling
	Model Swap (Model Multiplex)
	Outlines
	Examples of Cognitive Architecture
	Examples of Cognitive Architecture
	Examples of Cognitive Architecture
	Examples of Cognitive Architecture
	Different Cognitive Architectures
	Different Cognitive Architectures
	Service Level Agreements
	Service Level Agreements
	Challenges in SPE4FMware
	Picking more powerful FMs within a simple cognitive architecture versus simpler FMs within a more complex cognitive architecture
	Pipelining the execution of cognitive code as it is being generated versus waiting for the full generation and verification of such code
	The addition of semantic caching throughout the cognitive architecture
	Innovation Path in SPE4FMware
	Challenges in SPE4FMware
	Communication
	Deciding the communication language
	Defining the communication format
	Correcting communication messages
	Optimizing communication messages
	Innovation path for�Challenge #2: Complexity of creating token-efficient communication language between the AI components of FMware
	Innovation Path in SPE4FMware
	Challenges in SPE4FMware
	Complex model-level optimization
	Excessive amount of performance configuration knobs
	Evolving and moving target
	Innovation Path in SPE4FMware
	McDonald's Speedy Service System
	Runtime: environment or infrastructure that supports the execution of a program while it is running
	Challenges in SPE4FMware
	Selecting optimal deployment options when hosting FMware
	Deploying multi-process FMware efficiently
	Deploying multi-tenant FMware efficiently
	Innovation Path in SPE4FMware
	Our vision: SLA-aware FMware Runtime
	Slide Number 61
	Slide Number 62

